植物生态

浑善达克沙地长梗扁桃群丛特征及其驱动因素分析

  • 陈加伟 ,
  • 褚建民 ,
  • 甘红豪 ,
  • 徐磊 ,
  • 公帅 ,
  • 刘浩 ,
  • 王迎新 ,
  • 杨洪晓 ,
  • 徐晓庆 ,
  • 齐丹卉
展开
  • 1.中国林业科学研究院林业研究所,国家林草局林木培育重点实验室,北京 100091
    2.乌鲁木齐市种苗场,新疆 乌鲁木齐 830011
    3.中国林业科学研究院生态保护与修复研究所,北京 100091
    4.青岛农业大学资源与环境学院,山东 青岛 266109
    5.西南林业大学生态与环境学院,云南 昆明 650224
陈加伟(1995-),男,硕士研究生,主要从事干旱半干旱草原退化恢复技术方面的研究. E-mail: chenjiawei9597@163.com

收稿日期: 2022-11-30

  修回日期: 2023-01-13

  网络出版日期: 2023-05-30

基金资助

中央级公益性科研院所基本科研业务费专项(CAFYBB2020ZB001);科技部科技基础资源调查专项(2017FY100205);西南林业大学科研专项(112129)

Asociation characteristics of Amygdalus pedunculata and the environmental factors driving them in Otindag Sandy Land

  • Jiawei CHEN ,
  • Jianmin CHU ,
  • Honghao GAN ,
  • Lei XU ,
  • Shuai GONG ,
  • Hao LIU ,
  • Yingxin WANG ,
  • Hongxiao YANG ,
  • Xiaoqing XU ,
  • Danhui QI
Expand
  • 1. Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
    2. Seed Field of Urumqi, Urumqi 830011, Xinjiang, China
    3. Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
    4. College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, Shandong, China
    5. College of Ecology and Environment, Southwest Forestry University, Kunming 650224, Yunnan, China

Received date: 2022-11-30

  Revised date: 2023-01-13

  Online published: 2023-05-30

摘要

植被群丛的稳定对于群落演替乃至区域生态系统安全发挥着关键作用。受气候变化和人类活动影响,长梗扁桃(Amygdalus pedunculata)自然群丛退化严重,面积不断减少,亟需保护。本研究基于浑善达克沙地长梗扁桃群丛35个样方的数据,通过典范对应分析(Canonical Correspondence Analusis,CCA)揭示了长梗扁桃群丛分布的驱动因子以及不同群丛特征与环境因子之间的关系。研究发现,基于立地条件的差异,长梗扁桃群丛可分为4种类型:群丛Ⅰ,长梗扁桃-蒙古韭(Allium mongolicum);群丛Ⅱ,长梗扁桃-西北针茅(Stipa sareptana var. krylovii)-冷蒿(Artemisia frigida);群丛Ⅲ,长梗扁桃-画眉草(Eragrostis pilosa);群丛Ⅳ,榆树(Ulmus pumila)-长梗扁桃-蒙古虫实(Corispermum mongolicum)。大尺度上,温度和海拔是影响长梗扁桃群丛分布的主要环境因子,贡献率分别为13.2%和11.4%。小尺度上,10~20 cm和20~30 cm土壤有机质和海拔是影响群丛结构特征的关键因素。群从Ⅱ和群从Ⅲ的结构特征对土壤因子响应较为敏感,海拔是群丛Ⅰ和群丛Ⅳ结构特征的主要影响因子。本研究明确了温度、土壤和海拔是浑善达克沙地长梗扁桃群丛的主要环境影响因子,而关于土壤和气候对于群丛的交叉影响还有待进一步研究。

本文引用格式

陈加伟 , 褚建民 , 甘红豪 , 徐磊 , 公帅 , 刘浩 , 王迎新 , 杨洪晓 , 徐晓庆 , 齐丹卉 . 浑善达克沙地长梗扁桃群丛特征及其驱动因素分析[J]. 干旱区研究, 2023 , 40(5) : 777 -784 . DOI: 10.13866/j.azr.2023.05.10

Abstract

The stability of plant associations plays a vital role in the plant succession and safety of regional ecosystems. The biome of Amygdalus pedunculata is undergoing severe degradation because of climate change and human activities. Investigation of the characteristics of A. pedunculata associations and the factors affecting them can provide a scientific basis for restoring and managing the degradation of its biome. We conducted a study in Otindag Sandy Land to analyze the characteristics of the four typical A. pedunculata associations based on the surveyed data in 35 quadrats. Canonical correspondence analysis was used to detect the driving factors of the association distribution pattern in this region, and the relationship between species characteristics and environmental variables in each A. pedunculata association. Based on the differences in site conditions, the A. pedunculata community can be divided into four associations: Ⅰ, Amygdalus pedunculata-Allium mongolicum; Ⅱ, Amygdalus pedunculata-Stipa sareptana var. krylovii-Artemisia frigida; Ⅲ, Amygdalus pedunculata-Eragrostis pilosa; and Ⅳ, Ulmus pumila-Amygdalus pedunculata-Corispermum mongolicum. In general, temperature and elevation were the main environmental factors regulating the distribution of A. pedunculata associations with contribution rates of 13.2% and 11.4%, respectively. Soil organic matter (10-20 cm and 20-30 cm) was the determinant affecting the structure of the A. pedunculata associations. Associations I and II are influenced by elevation, growing season temperature, and 0-10 cm soil organic matter; association III is more sensitive to climatic and soil factors; and association IV is regulated by elevation.

参考文献

[1] Shugart H H, Saatchi S, Hall F G. Importance of structure and its measurement in quantifying function of forest ecosystems[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G2): G00E13.
[2] Bardgett R D, Bullock J M, Lavorel S, et al. Combatting global grassland degradation[J]. Nature Reviews Earth & Environment, 2021, 2(10): 720-735.
[3] Souza L, Weltzin J F, Sanders N J. Differential effects of two dominant plant species on community structure and invasibility in an old-field ecosystem[J]. Journal of Plant Ecology, 2011, 4(3): 123-131.
[4] Marini L, Scotton M, Klimek S, et al. Effects of local factors on plant species richness and composition of Alpine meadows[J]. Agriculture, Ecosystems & Environment, 2007, 119(3/4): 281-288.
[5] 宋永昌. 植被生态学[M]. 上海: 华东师范大学出版社, 2001.
[5] [Song Yongchang. Vegetation Ecology[M]. Shanghai: East China Normal University Press, 2001. ]
[6] Tuomisto H, Zuquim G, Cárdenas G. Species richness and diversity along edaphic and climatic gradients in Amazonia[J]. Ecography, 2014, 37(11): 1034-1046.
[7] 刘海江, 郭柯. 浑善达克沙地丘间低地植物群落的分类与排序[J]. 生态学报, 2003, 19(10): 2163-2169.
[7] [Liu Haijiang, Guo Ke. Classification and ordination analysis of plant communities in Inter-dune lowland in Hunshandak Sandy Land[J]. Acta Ecologica Sinica, 2003, 19(10): 2163-2169. ]
[8] Palpurina S, Chytry M, Tzonev R, et al. Patterns of fine-scale plant species richness in dry grasslands across the eastern Balkan Peninsula[J]. Acta Oecologica, 2015, 63(29): 36-46.
[9] Sturm M, Racine C, Tape K. Increasing shrub abundance in the Arctic[J]. Nature, 2001, 411(6837): 546-547.
[10] He Y F, D'Odorico P, De Wekker S F J. The role of vegetation-microclimate feedback in promoting shrub encroachment in the northern Chihuahuan desert[J]. Global Change Biology, 2015, 21(6): 2141-2154.
[11] Eldridge D J, Bowker M A, Maestre F T, et al. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis[J]. Ecology Letters, 2011, 14(7): 709-722.
[12] Mogashoa R, Dlamini P, Gxasheka M. Grass species richness decreases along a woody plant encroachment gradient in a semi-arid savanna grassland, South Africa[J]. Landscape Ecology, 2021, 36(2): 617-636.
[13] Su Y Z, Zhao H L, Li Y L, et al. Influencing mechanisms of several shrubs on soil chemical properties in semiarid Horqin Sandy Land, China[J]. Arid Land Research and Management, 2004, 18(3): 251-263.
[14] 李青丰, 胡春元, 王明玖. 浑善达克地区生态环境劣化原因分析及治理对策[J]. 干旱区资源与环境, 2001, 15(3): 9-16.
[14] [Li Qingfeng, Hu Chunyuan, Wang Mingjiu. Analysis on the causes of eco-environmental deterioration in Hunshandake Sandy Land region and countermeasures[J]. Journal of Arid Land Resources and Environment, 2001, 15(3): 9-16. ]
[15] 齐丹卉, 杨洪晓, 卢琦, 等. 浑善达克沙地植物群落物种多样性及环境解释[J]. 中国沙漠, 2021, 41(6): 65-77.
[15] [Qi Danhui, Yang Hongxiao, Lu Qi, et al. Biodiversity of plant communities and its environmental interpretation in the Otindag Sandy Land, China[J]. Journal of Desert Research, 2021, 41(6): 65-77. ]
[16] 宋创业, 郭柯. 浑善达克沙地中部丘间低地植物群落分布与土壤环境关系[J]. 植物生态学报, 2007, 31(1): 40-49.
[16] [Song Chuangye, Guo Ke. Relationship between plant community and soil on the Inter-dune lowland in the middle of Otingdag Sand Land[J]. Chinese Journal of Plant Ecology, 2007, 31(1): 40-49. ]
[17] 吕丽莎, 蔡宏宇, 杨永, 等. 中国裸子植物的物种多样性格局及其影响因子[J]. 生物多样性, 2018, 26(11): 1133-1146.
[17] [Lv Lisha, Cai Hongyu, Yang Yong, et al. Geographic patterns and environmental determinants of gymnosperm species diversity in China[J]. Biodiversity Science, 2018, 26(11): 1133-1146. ]
[18] Chu J M, Xu X Q, Zhang Y L. Production and properties of biodiesel produced from Amygdalus pedunculata Pall.[J]. Bioresource Technology, 2013, 134(21): 374-376.
[19] 闫涵, 马松梅, 魏博, 等. 孑遗灌木长柄扁桃的历史分布格局及其环境驱动力[J]. 植物生态学报, 2022, 46(7): 766-774.
[19] [Yan Han, Ma Songmei, Wei Bo, et al. Historical distribution patterns and environmental drivers of relict shrub Amygdalus pedunculata[J]. Chinese Journal of Plant Ecology, 2022, 46(7): 766-774. ]
[20] 褚建民, 李毅夫, 张雷, 等. 濒危物种长柄扁桃的潜在分布与保护策略[J]. 生物多样性, 2017, 25(8): 799-806.
[20] [Chu Jianmin, Li Yifu, Zhang Lei, et al. Potential distribution range and conservation strategies for the endangered species Amygdalus pedunculata[J]. Biodiversity Science, 2017, 25(8): 799-806. ]
[21] 李聪, 李国平, 陈俏, 等. 长柄扁桃油脂肪酸成分分析[J]. 中国油脂, 2010, 35(4): 77-79.
[21] [Li Cong, Li Guoping, Chen Qiao, et al. Fatty acid composition analysis of the seed oil of Amygdalus pedunculatus Pall.[J]. China Oils and Fats, 2010, 35(4): 77-79. ]
[22] 王国宏, 方精云, 郭柯, 等. 《中国植被志》研编内容与规范[J]. 植物生态学报, 2020, 44(2): 128-178.
[22] [Wang Guohong, Fang Jingyun, Guo Ke, et al. Contents and protocols for the classification and description of vegetation formations, alliances and associations of vegetation of China[J]. Chinese Journal of Plant Ecology, 2020, 44(2): 128-178. ]
[23] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[23] [Lu Rukun. Analytical Methods of Soil Agricultural Chemistry[M]. Beijing: China Agricultural Science Press, 2000. ]
[24] 张金屯. 数量生态学[M]. 北京: 科学出版社, 2004.
[24] [Zhang Jintun. Numerical Ecology[M]. Beijing: Science Press, 2004. ]
[25] 郭柯, 方精云, 王国宏, 等. 中国植被分类系统修订方案[J]. 植物生态学报, 2020, 44(2): 111-127.
[25] [Guo Ke, Fang Jingyun, Wang Guohong, et al. Revised scheme of vegetation classification system of China[J]. Chinese Journal of Plant Ecology, 2020, 44(2): 111-127. ]
[26] Belbin L, McDonald C. Comparing three classification strategies for use in ecology[J]. Journal of Vegetation Science, 1993, 4(3): 341-348.
[27] Dufrêne M, Legendre P. Species assemblages and indicator species: The need for a flexible asymmetrical approach[J]. Ecological Monographs, 1997, 67(3): 345-366.
[28] 于梦凡. 植物群丛的数量分类方法及对比研究——以辽宁青龙河保护区为例[D]. 北京: 北京林业大学, 2014.
[28] [Yu Mengfan. Comparative Study on Numerical Classification of Plant Association: A Case Study in Liaoning Qinglong River Natural Reserve[D]. Beijing: Beijing Forestry Universuty, 2014. ]
[29] 丁威, 王玉冰, 向官海, 等. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43.
[29] [Ding Wei, Wang Yubing, Xiang Guanhai, et al. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe[J]. Chinese Journal of Plant Ecology, 2020, 44(1): 33-43. ]
[30] Maestre F T, Bowker M A, Puche M D, et al. Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands[J]. Ecology letters, 2009, 12(9): 930-941.
[31] Thompson J A, Zinnert J C, Young D R. Immediate effects of microclimate modification enhance native shrub encroachment[J]. Ecosphere, 2017, 8(2): e1687.
[32] 王珺, 刘茂松, 盛晟, 等. 干旱区植物群落土壤水盐及根系生物量的空间分布格局[J]. 生态学报, 2008, 28(9): 4120-4127.
[32] [Wang Jun, Liu Maosong, et al. Spatial distributions of soil water salts and roots in an arid arbor-herb community[J]. Acta Ecologica Sinica, 2008, 28(9): 4120-4127. ]
[33] Zuo X A, Zhao X Y, Zhao H L, et al. Scale dependent effects of environmental factors on vegetation pattern and composition in Horqin Sandy Land, Northern China[J]. Geoderma, 2012, 173(45): 1-9.
[34] Gaston K J. Global patterns in biodiversity[J]. Nature, 2000, 405(6783): 220-227.
[35] 张鹏, 李颖, 王业林, 等. 短脚锦鸡儿灌丛对植物群落和土壤微生物群落的促进效应研究[J]. 干旱区研究, 2021, 38(2): 421-428.
[35] [Zhang Peng, Li Ying, Wang Yelin, et al. The positive effect of Caragana breviflora shrubs on plant communities and soil microbial communities in the Inner Mongolia desert region[J]. Arid Zone Research, 2021, 38(2): 421-428. ]
[36] 刘咏梅, 董幸枝, 龙永清, 等. 退化高寒草甸狼毒群落分类特征及其环境影响因子[J]. 草业学报, 2022, 31(4): 1-11.
[36] [Liu Yongmei, Dong Xingzhi, Long Yongqing, et al. Classification of Stellera chamaejasme communities and their relationships with environmental factors in degraded alpine meadow in the central Qilian Mountains, Qinghai Province[J]. Acta Prataculturae Sinica, 2022, 31(4): 1-11. ]
[37] 祁正超, 常佩静, 李永善, 等. 放牧对荒漠灌丛草地土壤团聚体组成及其稳定性的影响[J]. 干旱区研究, 2021, 38(1): 87-94.
[37] [Qi Zhengchao, Chang Peijing, Li Yongshan, et al. Effects of grazing intensity on soil aggregates composition, stability, nutrients and C/N in desert shrubland[J]. Arid Zone Research, 2021, 38(1): 87-94. ]
文章导航

/