水土资源

长江源区1980—2020年水沙变化规律

  • 姚春艳 ,
  • 刘洪鹄 ,
  • 刘竞
展开
  • 1.中国科学院教育部水土保持与生态环境研究中心,陕西 杨凌 712100
    2.中国科学院水利部水土保持研究所,陕西 杨凌 712100
    3.中国科学院大学,北京 100049
    4.长江水利委员会长江科学院,湖北 武汉 430010
姚春艳(1998-),女,硕士研究生,主要从事土壤侵蚀与水土保持研究. E-mail: yaochunyan20@mails.ucas.ac.cn

收稿日期: 2022-08-18

  修回日期: 2022-10-06

  网络出版日期: 2023-05-30

基金资助

国家自然科学基金联合项目(U2240226)

Variation of runoff and sediment in the headwaters of the Yangtze River from 1980 to 2020

  • Chunyan YAO ,
  • Honghu LIU ,
  • Jing LIU
Expand
  • 1. The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, Shaanxi, China
    2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
    4. Changjiang River Scientific Research Institute, Changjiang Water Resource Commission, Wuhan 430010, Hubei, China

Received date: 2022-08-18

  Revised date: 2022-10-06

  Online published: 2023-05-30

摘要

基于长江源区1980—2020年12个站点日降水及直门达站年径流及泥沙等数据,利用中国土壤流失方程、偏最小二乘结构方程和累积距平等方法,分析源区土壤侵蚀、河道水沙变化及长时间尺度下与降水的耦合作用机制。结果表明:(1) 长江源区年土壤侵蚀模数呈显著增加趋势(P<0.05),且年均土壤侵蚀模数为4.71 t·hm-2·a-1,强烈及以上强度侵蚀主要分布在源区东南部。(2) 源区径流量显著增加(P<0.05),且2004年为突变年,含沙量和输沙量无明显变化趋势。(3) 降水对径流和土壤侵蚀均有显著正向效应,解释度分别为70%、52.9%。径流和土壤侵蚀对输沙量变化均具有直接正向影响,降水、径流和土壤侵蚀对输沙量变化的综合解释度达72.5%,结果可为流域生态工程实施效果的研究与评价提供科学依据。

本文引用格式

姚春艳 , 刘洪鹄 , 刘竞 . 长江源区1980—2020年水沙变化规律[J]. 干旱区研究, 2023 , 40(5) : 726 -736 . DOI: 10.13866/j.azr.2023.05.05

Abstract

The changes in soil loss, runoff, and sediment load in the headwaters of the Yangtze River and their correlation were studied based on the data of daily precipitation at 12 stations, and annual runoff and sediment at Zhimenda station in the headwaters of this river from 1980 to 2020. (1) The annual soil erosion modulus in the source area showed a significantly increasing trend (P<0.05), and the average annual soil erosion modulus was 4.71 t·hm-2·a-1. The erosion intensity and higher grades of erosion were mainly distributed in the southeast of the headwaters of the Yangtze River. (2) The runoff increased significantly (P<0.05), however, there was an abrupt change in 2004 when the suspended sediment concentrate and sediment load showed no significant change. (3) Precipitation had a significant positive effect on runoff and soil loss at 70% and 52.9%, respectively. Both runoff and soil loss showed direct positive effects on the sediment load. Precipitation, runoff, and soil loss explained 72.5% of the variation in sediment load. During this period, changes in precipitation had significant effects on soil loss and sediment in the headwaters of the Yangtze River. The results can provide a scientific basis for the research and evaluation of the effects of implementing ecological engineering in the headwaters of the Yangtze River.

参考文献

[1] Walling D E, Fang D. Recent trends in the suspended sediment loads of the world’s rivers[J]. Global Planet Change, 2003, 39: 111-126.
[2] Gebremicael T G, Mohamed Y A, Betrie G D, et al. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps[J]. Journal of Hydrology, 2013, 482: 57-68.
[3] Meade R H, Moody J A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940-2007[J]. Hydrological Processes, 2010, 24(1): 35-49.
[4] Wang Shuai, Fu Bojie, Piao Shilong, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9(1): 38-41.
[5] Zhang Fan, Zeng Chen, Wang Guanxing, et al. Runoff and sediment yield in relation to precipitation, temperature and glaciers on the Tibetan Plateau[J]. International Soil and Water Conservation Research, 2022, 10(2): 197-207.
[6] 王学良, 陈仁升, 刘俊峰, 等. 1956—2021年疏勒河流域主要河流出山径流变化及成因分析[J]. 干旱区研究, 2022, 39(6): 1782-1792.
[6] [Wang Xueliang, Chen Rensheng, Liu Junfeng, et al. Changes in runoff from major rivers and analysis of its causes in the Shule River Basin from 1956-2021[J]. Arid Zone Research, 2022, 39(6): 1782-1792. ]
[7] 赵蒙恩, 闫庆武, 刘政婷, 等. 鄂尔多斯市土壤侵蚀时空演变及影响因子分析[J]. 干旱区研究, 2022, 39(6): 1819-1831.
[7] [Zhao Meng’en, Yan Qingwu, Liu Zhengting, et al. Analysis of temporal and spatial evolution and influencing factors of soil erosion in Ordos City[J]. Arid Zone Research, 2022, 39(6): 1819-1831. ]
[8] 孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报, 2012, 67(1): 3-12.
[8] [Sun Honglie, Zheng Du, Yao Tandong, et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau[J]. Acta Geographica Sinica, 2012, 67(1): 3-12. ]
[9] 关颖慧, 王淑芝, 温得平. 长江源区水沙变化特征及成因分析[J]. 泥沙研究, 2021, 46(3): 43-49, 56.
[9] [Guan Yinghui, Wang Shuzhi, Wen Deping. Processes of runoff and sediment load in the source regions of the Yangtze River[J]. Journal of Sediment Research, 2021, 46(3): 43-49, 56. ]
[10] 潘佳佳, 郭新蕾, 王涛, 等. 长江源区年际冰水情变化及其影响因子分析[J]. 中国水利水电科学研究院学报, 2023, 21(1): 64-73.
[10] [Pan Jiajia, Guo Xinlei, Wang Tao, et al. River ice-flow situations and interannual variations in the source region of the Yangtze River on the Tibetan Plateau[J]. Journal of China Institute of Water Resources and Hydropower Research, 2023, 21(1): 64-73. ]
[11] 刘彦, 张建军, 张岩, 等. 三江源区近数十年河流输沙及水沙关系变化[J]. 中国水土保持科学, 2016, 14(6): 61-69.
[11] [Liu Yan, Zhang Jianjun, Zhang Yan, et al. Variations of riverine sediment and the relationship between runoff and sediment in the source region of three rivers[J]. Science of Soil and Water Conservation, 2016, 14(6): 61-69. ]
[12] Naveed A, Wang Genxu, Martijn J, et al. Separation of the impact of landuse/landcover change and climate change on runoff in the Upstream area of the Yangtze River, China[J]. Water Resources Management, 2022, 36(1): 181-201.
[13] Pavisorn C, Xu Mengzhen, Tang Wenzhe. Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang-Mekong River by using the modified RUSLE model[J]. International Soil and Water Conservation Research, 2020, 8(3): 1-47.
[14] Zhang Fan, Shi Xiaonan, Zeng Chen. Recent stepwise sediment flux increase with climate change in the Tuotuo River in the central Tibetan Plateau[J]. Science Bulletin, 2020, 65(5): 410-418.
[15] Teng Hongfen, Liang Zongzhang, Chen Songchao, et al. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models[J]. Science of the Total Environment, 2018, 635: 673-686.
[16] Wang Yousheng, Cheng Congcong, Xie Yun, et al. Increasing trends in rainfall-runoff erosivity in the Source Region of the Three Rivers, 1961-2012[J]. Science of the Total Environment, 2017, 592: 639-648.
[17] 苏远逸, 冯朝红, 张扬, 等. 黄土丘陵区覆沙坡面产流产沙过程及水沙关系[J]. 干旱区研究, 2022, 39(4): 1166-1173.
[17] [Su Yuanyi, Feng Chaohong, Zhang Yang, et al. Runoff and sediment yield and relationship between water and sediment of sand covered slope of Loess Hilly Region[J]. Arid Zone Research, 2022, 39(4): 1166-1173. ]
[18] 张凡, 史晓楠, 曾辰, 等. 青藏高原河流输沙量变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1274-1284.
[18] [Zhang Fan, Shi Xiaonan, Zeng Chen, et al. Variation and influence of riverine sediment transport from Tibetan Plateau, China[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1274-1284. ]
[19] Liu Baoyuan, Zhang Keli, Xie Yun, et al. An Empirical Soil Loss Equation[N]. Beijing: 12th ISCO Conference, 2002.
[20] 章文波, 谢云, 刘宝元. 降雨侵蚀力研究进展[J]. 水土保持学报, 2002, 16(5): 43-46.
[20] [Zhang Wenbo, Xie Yun, Liu Baoyuan. Rainfall erosivity estimation using daily rainfall amounts[J]. Scientia Geographica Sinica, 2002, 16(5): 43-46. ]
[21] 张科利, 彭文英, 杨红丽. 中国土壤可蚀性值及其估算[J]. 土壤学报, 2007, 44(1): 7-13.
[21] [Zhang Keli, Peng Wenying, Yang Hongli. Soil erodibility and its estimation for agricultural soil in China[J]. Acta Pedologica Sinica, 2007, 44(1): 7-13. ]
[22] Liu Honghu, Kiesel J, H?rmann G, et al. Effects of DEM horizontal resolution and methods on calculating the slope length factor in gently rolling landscapes[J]. Catena, 2011, 87(3): 368-375.
[23] Fu Bojie, Zhao Wenwu, Chen Lidong, et al. Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China[J]. Land Degradation & Development, 2005, 16(1): 73-85.
[24] Guo Qiankun, Liu Baoyuan, Xie Yun, et al. Estimation of USLE crop and management factor values for crop rotation systems in China[J]. Journal of Integrative Agriculture, 2020, 14(9): 1877-1888.
[25] 杜俊, 师长兴, 周园园. 长江上游侵蚀产沙格局及其控制因素[J]. 山地学报, 2010, 28(6): 660-667.
[25] [Du Jun, Shi Changxing, Zhou Yuanyuan. Sediment yield pattern and its controlling factors in the Upper Yangtze River[J]. Journal of Mountain Science, 2010, 28(6): 660-667. ]
[26] Chin W W, Marcoulides G. The partial least squares approach to structural equation modeling[J]. Advances in Hospitality and Lsure, 1998, 295: 295-336.
[27] 刘强, 尉飞鸿, 常康飞, 等. 皇甫川流域水沙变化特征及其影响因素[J]. 干旱区研究, 2021, 38(6): 1506-1513.
[27] [Liu Qiang, Wei Feihong, Chang Kangfei, et al. Characteristics of water and sediment variation in the Huangfuchuan basin and its influencing factors[J]. Arid Zone Research, 2021, 38(6): 1506-1513. ]
[28] Liu Baoyuan, Xie Yun, Li Zhiguang, et al. The assessment of soil loss by water erosion in China[J]. International Soil and Water Conservation Research, 2020, 7(2): 1-16.
[29] 魏梦美, 符素华, 刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[29] [Wei Mengmei, Fu Suhua, Liu Baoyuan. Quantitative research of water erosion on the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2021, 36(7): 740-752. ]
[30] 于文竹. 基于模型模拟及核素示踪的三江源土壤侵蚀研究[D]. 兰州: 兰州大学, 2021.
[30] [Yu Wenzhu. Study on Soil Erosion of Three River Source Region Based on Erosion Model and Nuclide Tracer Technique[D]. Lanzhou: Lanzhou University, 2021. ]
[31] 刘杰, 骆婵娟, 曹江源, 等. 青海三江源区土壤侵蚀现状及其分布[J]. 中国水土保持, 2010, 9(2): 49-51.
[31] [Liu Jie, Luo Chanjuan, Cao Jiangyuan, et al. Present status and distribution of soil erosion of the Three-River-Source area in Qinghai[J]. Soil and Water Conservation in China, 2010, 9(2): 49-51. ]
[32] 张平仓, 刘纪根. 长江源区水土流失考察初析[J]. 人民长江, 2011, 42(19): 95-99.
[32] [Zhang Pingcang, Liu Jigen. Preliminary analysis on investigation of soil and water loss in source regions of Yangtze River[J]. Yangtze River, 2011, 42(19): 95-99. ]
[33] 唐见, 曹慧群, 陈进. 生态保护工程和气候变化对长江源区植被变化的影响量化[J]. 地理学报, 2019, 74(1): 76-86.
[33] [Tang Jian, Cao Huiqun, Chen Jin. Effects of ecological conservation projects and climate variations on vegetation changes in the Source Region of Yangtze River[J]. Acta Geographica Sinica, 2019, 74(1): 76-86. ]
[34] 邵全琴, 刘树超, 宁佳, 等. 2000—2019年中国重大生态工程生态效益遥感评估[J]. 地理学报, 2022, 77(9): 2133-2153.
[34] [Shao Quanqin, Liu Shuchao, Ning Jia, et al. Assessment of ecological benefits of key national ecological projects in China in 2000-2019 using remote sensing[J]. Acta Geographica Sinica, 2022, 77(9): 2133-2153. ]
[35] 邵全琴, 樊江文, 刘纪远, 等. 三江源生态保护和建设一期工程生态成效评估[J]. 地理学报, 2016, 71(1): 3-20.
[35] [Shao Quanqin, Fan Jiangwen, Liu Jiyuan, et al. Assessment on the effects of the first-stage ecological conservation and restoration project in Sanjiangyuan region[J]. Acta Geographica Sinica, 2016, 71(1): 3-20. ]
[36] 张永勇, 张士锋, 翟晓燕, 等. 三江源区径流演变及其对气候变化的响应[J]. 地理学报, 2012, 22(5): 781-794.
[36] [Zhang Yongyong, Zhang Shifeng, Zhai Xiaoyan, et al. Runoff variation in the Three Rivers Source Region and its response to climate change[J]. Acta Geographica Sinica, 2012, 22(5): 781-794. ]
[37] 李凯. 三江源区径流演变规律及未来变化趋势研究[D]. 武汉: 长江科学院, 2021.
[37] [Li Kai. Study on the Evolution Law and Future Trend of Runoff in the Three-River Headwaters Region[D]. Wuhan: Changjiang River Scientific Research Institute, 2021. ]
[38] 胡光印, 董治宝, 逯军峰, 等. 近30 a来长江源区沙漠化时空演变过程及成因分析[J]. 干旱区地理, 2011, 34(2): 300-308.
[38] [Hu Guangyin, Dong Zhibao, Lu Junfeng, et al. Land desertification monitoring in the Source Region of Yangtze River from 1975 to 2005 and the analysis of its causes[J]. Arid Land Geography, 2011, 34(2): 300-308. ]
[39] Zokaib S, Naser G h. A study on rainfall, runoff, and soil loss relations at different land uses: A case in Hilkot watershed in Pakistan[J]. International Journal of Sediment Research, 2012, 27: 388-393.
[40] 景可, 焦菊英, 李林育, 等. 输沙量、侵蚀量与泥沙输移比的流域尺度关系——以赣江流域为例[J]. 地理研究, 2010, 29(7): 1163-1170.
[40] [Jing Ke, Jiao Juying, Li Linyu, et al. The scale relationship of sediment discharge, erosion amount and sediment delivery ratio in drainage basin: A case study in the Ganjiang River Basin[J]. Geographical Research, 2010, 29(7): 1163-1170. ]
[41] 周侃, 张健, 虞虎, 等. 国家公园及周边地区人为扰动强度的时空变化与驱动因素——以三江源国家公园为例[J]. 生态学报, 2022, 42(14): 5574-5585.
[41] [Zhou Kan, Zhang Jian, Yu Hu, et al. Spatio-temporal varation and drivers of degree of human disturbance in national park and surrounding areas: A case study of Sanjiangyuan National Park[J]. Acta Ecologica Sinica, 2022, 42(14): 5574-5585. ]
[42] 郭帅, 裴艳茜, 胡胜, 等. 黄河流域植被指数对气候变化的响应及其与水沙变化的关系[J]. 水土保持通报, 2020, 40(3): 1-7.
[42] [Guo Shuai, Pei Yanqian, Hu Sheng, et al. Response of vegetation index to climate change and their relationship with runoff-sediment change in Yellow River basin[J]. Bulletin of Soil and Water Conservation, 2020, 40(3): l-7. ]
[43] Ji Guangxing, Song Huiyun, Wei Hejie, et al. Attribution analysis of climate and anthropic factors on runoff and vegetation changes in the source area of the Yangtze River from 1982 to 2016[J]. Land, 2021, 10: 612-625.
文章导航

/