中亚五国水-能源-粮食-生态耦合关系及时空分异
收稿日期: 2022-09-22
修回日期: 2023-01-17
网络出版日期: 2023-04-28
基金资助
新疆水专项(2020.E-002);国家社会科学基金一般项目(19BGL181);国家自然科学基金面上项目(71974053);中央高校基本科研业务费专项资金项目(B210204025);中央高校基本科研业务费专项资金项目(B210207007);湖南省水利厅科技项目(XSKJ2021000-03)
Coupling relationship and spatiotemporal differentiation of the water-energy-food-ecology nexus in five Central Asian countries
Received date: 2022-09-22
Revised date: 2023-01-17
Online published: 2023-04-28
针对中亚复杂的跨界水问题,从地区和国家层面基于系统耦合视角开展水-能源-粮食-生态(WEFE)系统协调性研究。首先构建了WEFE耦合协调评价指标体系,然后运用耦合协调度模型对中亚地区WEFE协调发展水平及其时空演变特征进行定量评价。结果表明:(1) 近20 a中亚地区WEFE系统耦合度保持较高水平,耦合协调度呈现缓慢增长趋势但处于勉强协调;(2) 各国耦合协调发展水平差异较大,哈萨克斯坦耦合协调水平最优但处于初级协调,塔吉克斯坦和吉尔吉斯斯坦为勉强协调,土库曼斯坦和乌兹别克斯坦为濒临失调;(3) 对比多系统的发展水平发现,塔吉克斯坦和吉尔吉斯斯坦粮食存在明显滞后,土库曼斯坦属于水资源滞后型,哈萨克斯坦和乌兹别克斯坦属于能源滞后型,子系统间未能达到良好匹配,一定程度上影响地区协调发展。研究成果可为中亚地区的WEFE协同发展及国家间跨界河流开发合作提供决策依据。
关键词: 水-能源-粮食-生态; 中亚; 耦合协调; 时空演变
吴玥葶 , 郭利丹 , 井沛然 , 黄峰 , 王浩轩 . 中亚五国水-能源-粮食-生态耦合关系及时空分异[J]. 干旱区研究, 2023 , 40(4) : 573 -582 . DOI: 10.13866/j.azr.2023.04.06
To shed light on the complex transboundary water problems in Central Asia, a study on water-energy-food-ecology (WEFE) system coordination was conducted from the regional and national levels based on a system coupling perspective. First, the WEFE evaluation index system for coupling and coordination was constructed, and then the coupling coordination degree model was applied to quantitatively evaluate the level of coordinated development of WEFE and its spatial and temporal evolution in Central Asia. The results show that: (1) In the last 20 years, the coupling degree of WEFE in Central Asia basically maintained a high level, and the coupling coordination degree showed a slow growth trend but was barely coordination. (2) The development level of coupling coordination varied greatly among countries, and the coupling coordination level of Kazakhstan was the best, albeit in primary coordination. Tajikistan and Kyrgyzstan barely performed coordination, and Turkmenistan and Uzbekistan were on the brink of misalignment. (3) Comparing the development levels of multiple systems, it was found that there was a significant lag in the food system in Tajikistan and Kyrgyzstan, a lag in the water system in Turkmenistan, and a lag in the energy system in Kazakhstan and Uzbekistan, which failed to achieve a good match among systems and affected the regional coordinated development to a certain extent. The results can provide a basis for decision-making on the synergistic development of WEFE in Central Asia and transboundary river development cooperation among countries.
[1] | Hoff H. Understanding the Nexus. Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus[R]. Stockholm: Stockholm Environment Institute, 2011. |
[2] | 于宏源. 纽带安全: 能源-粮食-水安全威胁及其思考[J]. 区域与全球发展, 2018, 2(2): 94-110. |
[2] | [Yu Hongyuan. The energy-food-water security nexus security and its implications[J]. Area Studies and Global Development, 2018, 2(2): 94-110.] |
[3] | Zhang C, Chen X X, Li Y, et al. Water-energy-food nexus: Concepts, questions and methodologies[J]. Journal of Cleaner Production, 2018, 195: 625-639. |
[4] | 李良, 毕军, 周元春, 等. 基于粮食-能源-水关联关系的风险管控研究进展[J]. 中国人口·资源与环境, 2018, 28(7): 85-92. |
[4] | [Li Liang, Bi Jun, Zhou Yuanchun, et al. Research progress of regional environment risk management: From the perspectives of food-energy-water nexus[J]. China Population, Resources and Environment, 2018, 28(7): 85-92.] |
[5] | Simpson G B, Jewitt G P W. The development of the water-energy-food nexus as a framework for achieving resource security: A review[J]. Frontiers in Environmental Science, 2019, 7: 8. |
[6] | 罗巍, 杨玄酯, 杨永芳, 等. 黄河流域水-能源-粮食纽带关系协同演化及预测[J]. 资源科学, 2022, 44(3): 608-619. |
[6] | [Luo Wei, Yang Xuanzhi, Yang Yongfang, et al. Co-evolution of water-energy-food-nexus in the Yellow River Basin and forecast of future development[J]. Resources Science, 2022, 44(3): 608-619.] |
[7] | Owen A, Scott K, Barrett J. Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus[J]. Applied Energy, 2018, 210: 632-642. |
[8] | White D J, Hubacek K, Feng K, et al. The water-energy-food nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis[J]. Applied Energy, 2018, 210: 550-567. |
[9] | 孙才志, 周舟, 赵良仕. 基于SD模型的中国西南水-能源-粮食纽带系统仿真模拟[J]. 经济地理, 2021, 41(6): 20-29. |
[9] | [Sun Caizhi, Zhou Zhou, Zhao Liangshi. System simulation of water-energy-food in southwest China based on SD model[J]. Economic Geography, 2021, 41(6): 20-29.] |
[10] | Bakhshianlamouki E, Masia S, Karimi P, et al. A system dynamics model to quantify the impacts of restoration measures on the water-energy-food nexus in the Urmia lake Basin, Iran[J]. Science of the Total Environment, 2020, 708: 134874. |
[11] | Xu S S, He W J, Shen J Q, et al. Coupling and coordination degrees of the core water-energy-food nexus in China[J]. International Journal of Environmental Research and Public Health, 2019, 16(9): 1648. |
[12] | 白景锋, 张海军. 中国水-能源-粮食压力时空变动及驱动力分析[J]. 地理科学, 2018, 38(10): 1653-1660. |
[12] | [Bai Jingfeng, Zhang Haijun. Spatio-temporal variation and driving force of water-energy-food pressure in China[J]. Scientia Geographica Sinica, 2018, 38(10): 1653-1660.] |
[13] | 徐辉, 王亿文, 张宗艳, 等. 黄河流域水-能源-粮食耦合机理及协调发展时空演变[J]. 资源科学, 2021, 43(12): 2526-2537. |
[13] | [Xu Hui, Wang Yiwen, Zhang Zongyan, et al. Coupling mechanism of water-energy-food and spatiotemporal evolution of coordinated development in the Yellow River Basin[J]. Resources Science, 2021, 43(12): 2526-2537.] |
[14] | 石天戈, 时卉. 中亚五国资源环境承载与经济发展耦合协调性分析[J]. 世界地理研究, 2019, 28(6): 32-41. |
[14] | [Shi Tiange, Shi Hui. Coupling relationship between resources, environment carrying capacity and economy in five Central Asia countries[J]. World Regional Studies, 2019, 28(6): 32-41.] |
[15] | 王奕佳, 刘焱序, 宋爽, 等. 水-粮食-能源-生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693. |
[15] | [Wang Yijia, Liu Yanxu, Song Shuang, et al. Research progress of the water-food-energy-ecosystem nexus[J]. Advances in Earth Science, 2021, 36(7): 684-693.] |
[16] | Shi H Y, Luo G P, Zheng H W, et al. A novel causal structure-based framework for comparing a basin-wide water-energy-food-ecology nexus applied to the data-limited Amu Darya and Syr Darya river basins[J]. Hydrology and Earth System Sciences, 2021, 25(2): 901-925. |
[17] | 高洁, 赵勇, 姚俊强, 等. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384. |
[17] | [Gao Jie, Zhao Yong, Yao Junqiang, et al. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change[J]. Arid Zone Research, 2022, 39(5): 1371-1384.] |
[18] | Kuzmina Zh V, Treshkin S E. Climate changes in the Aral Sea region and Central Asia[J]. Arid Ecosystems, 2016, 6(4): 227-240. |
[19] | Lee S O, Jung Y. Efficiency of water use and its implications for a water-food nexus in the Aral Sea Basin[J]. Agricultural Water Management, 2018, 207: 80-90. |
[20] | Ziganshina D R, de Schutter J L G. Paving the way for evidence-driven transboundary water cooperation in Central Asia[J]. Journal of the American Water Resources Association, 2022, 58(6): 1149-1161. |
[21] | 姚俊强, 杨青, 毛炜峄, 等. 气候变化和人类活动对中亚地区水文环境的影响评估[J]. 冰川冻土, 2016, 38(1): 222-230. |
[21] | [Yao Junqiang, Yang Qing, Mao Weiyi, et al. Evaluation of the impacts of climate change and human activities on the hydrological environment in Central Asia[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 222-230.] |
[22] | 莫贵芬, 冯建中, 白林燕, 等. 2001—2018年中亚干旱区地表水资源时空变化特征[J]. 地理科学, 2022, 42(1): 174-184. |
[22] | [Mo Guifen, Feng Jianzhong, Bai Linyan, et al. Spatio-temporal dynamic characteristics of surface water resources in arid regions of Central Asia from 2001 to 2018[J]. Scientia Geographica Sinica, 2022, 42(1): 174-184.] |
[23] | Li J X, Chen Y N, Xu C C, et al. Evaluation and analysis of ecological security in arid areas of Central Asia based on the emergy ecological footprint (EEF) model[J]. Journal of Cleaner Production, 2019, 235: 664-677. |
[24] | 郝林钢, 左其亭, 刘建华, 等. “一带一路”中亚区水资源利用与经济社会发展匹配度分析[J]. 水资源保护, 2018, 34(4): 42-48. |
[24] | [Hao Lingang, Zuo Qiting, Liu Jianhua, et al. Analysis of matching degree between water resources utilization and economic-social development in Central Asia are of “Belt and Road”[J]. Water Resources Protection, 2018, 34(4): 42-48.] |
[25] | 何理, 王喻宣, 尹方平, 等. 全球气候变化影响下中亚水土资源与农业发展多元匹配特征研究[J]. 中国科学: 地球科学, 2020, 50(9): 1268-1279. |
[25] | [He Li, Wang Yuxuan, Yin Fangping, et al. The multivariate matching properties among water and soil resources and agricultural development in Central Asia under global climate change[J]. Scientia Sinica(Terrae), 2020, 50(9): 1268-1279.] |
[26] | 彭宇, 李发东, 徐宁, 等. 1990—2019年中亚五国干旱状况时空变化特征及大气涛动驱动分析[J]. 中国生态农业学报, 2021, 29(2): 312-324. |
[26] | [Peng Yu, Li Fadong, Xu Ning, et al. Spatial-temporal variations in drought conditions and their climatic oscillations in Central Asia from 1990 to 2019[J]. Chinese Journal of Eco-Agriculture, 2021, 29(2): 312-324.] |
[27] | 胡汝骥, 姜逢清, 王亚俊, 等. 中亚(五国)干旱生态地理环境特征[J]. 干旱区研究, 2014, 31(1): 1-12. |
[27] | [Hu Ruji, Jiang Fengqing, Wang Yajun, et al. Arid ecological and geographical conditions in five countries of Central Asia[J]. Arid Zone Research, 2014, 31(1): 1-12.] |
[28] | 郭利丹, 吴玥葶, 黄峰, 等. 上下游型跨界流域水资源重复博弈及策略——以咸海流域为例[J]. 水利经济, 2022, 40(6): 16-23. |
[28] | [Guo Lidan, Wu Yueting, Huang Feng, et al. Study on repeated game and strategy of transboundary basin water resources for the up-down type of international rivers: taking the Aral Sea Basin as an example[J]. Journal of Economics of Water Resources, 2022, 40(6): 16-23.] |
[29] | BP. Statistical Review of World Energy 2021[EB/OL]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf, 2022-07-10. |
[30] | 李稚, 李玉朋, 李鸿威, 等. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50. |
[30] | [Li Zhi, Li Yupeng, Li Hongwei, et al. Analysis of drought change and its impact in Central Asia[J]. Advances in Earth Science, 2022, 37(1): 37-50.] |
[31] | 邓鹏, 陈菁, 陈丹, 等. 区域水-能源-粮食耦合协调演化特征研究——以江苏省为例[J]. 水资源与水工程学报, 2017, 28(6): 232-238. |
[31] | [Deng Peng, Chen Jing, Chen Dan, et al. The evolutionary characteristics analysis of the coupling and coordination among water, energy and food: Take Jiangsu province as an example[J]. Journal of Water Resources and Water Engineering, 2017, 28(6): 232-238.] |
[32] | 孙才志, 阎晓东. 中国水资源-能源-粮食耦合系统安全评价及空间关联分析[J]. 水资源保护, 2018, 34(5): 1-8. |
[32] | [Sun Caizhi, Yan Xiaodong. Security evaluation and spatial correlation pattern analysis of water resources-energy-food nexus coupling system in China[J]. Water Resources Protection, 2018, 34(5): 1-8.] |
[33] | 李成宇, 张士强. 中国省际水-能源-粮食耦合协调度及影响因素研究[J]. 中国人口·资源与环境, 2020, 30(1): 120-128. |
[33] | [Li Chengyu, Zhang Shiqiang. Chinese provincial water-energy-food coupling coordination degree and influencing factors research[J]. China Population, Resources and Environment, 2020, 30(1): 120-128.] |
[34] | International Energy Agency (IEA). Database documentation (Renewables information 2022 edition)[EB/OL]. http://wds.iea.org/wds/pdf/ren_documentation.pdf, 2022-12-20. |
[35] | Cui D, Chen X, Xue Y L, et al. An integrated approach to investigate the relationship of coupling coordination between social economy and water environment on urban scale: A case study of Kunming[J]. Journal of Environmental Management, 2019, 234: 189-199. |
[36] | 周成, 冯学钢, 唐睿. 区域经济—生态环境—旅游产业耦合协调发展分析与预测——以长江经济带沿线各省市为例[J]. 经济地理, 2016, 36(3): 186-193. |
[36] | [Zhou Cheng, Feng Xuegang, Tang Rui. Ecological environment-tourism industry: A case study of provinces along the Yangtze economic zone[J]. Economic Geography, 2016, 36(3): 186-193.] |
[37] | 李福夺, 杨兴洪. 新疆粮食生产波动: 波动特征与影响因素[J]. 干旱区资源与环境, 2016, 30(8): 54-61. |
[37] | [Li Fuduo, Yang Xinghong. The food production fluctuation in Xinjiang: Fluctuation characteristics, influence factors and policy recommendations[J]. Journal of Arid Land Resources and Environment, 2016, 30(8): 54-61.] |
[38] | 廖重斌. 环境与经济协调发展的定量评判及其分类体系——以珠江三角洲城市群为例[J]. 热带地理, 1999, 19(2): 171-177. |
[38] | [Liao Chongbin. Quantitative judgement and classification system for coordinated development of environment and economy: A case study of the city group in the Pearl River Delta[J]. Tropical Geography, 1999, 19(2): 171-177.] |
[39] | Overland I. Natural gas and Russia-Turkmenistan relations[J]. Russian Analytical Digest, 2009, 56(9): 9-13. |
[40] | Huang J C, Na Y, Guo Y. Spatiotemporal characteristics and driving mechanism of the coupling coordination degree of urbanization and ecological environment in Kazakhstan[J]. Journal of Geographical Sciences, 2020, 30(11): 1802-1824. |
/
〈 | 〉 |