天气与气候

定量评估黑河流域4种下垫面类型对地表温度的影响

  • 李尔晨 ,
  • 张羽 ,
  • 苑广辉
展开
  • 1.南京信息工程大学,中国气象局气溶胶-云-降水重点开放实验室,江苏 南京 210044
    2.南京信大安全应急管理研究院,江苏 南京 210044
李尔晨(2001-),男,硕士研究生,主要从事陆气相互作用研究. E-mail: lec0325@163.com

收稿日期: 2022-06-01

  修回日期: 2022-07-11

  网络出版日期: 2023-02-24

基金资助

国家自然科学基金项目(42005061);江苏省基础研究计划自然科学基金(BK20200818)

Quantify the impacts of four land cover types on surface temperature in the Heihe River Basin

  • Erchen LI ,
  • Yu ZHANG ,
  • Guanghui YUAN
Expand
  • 1. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
    2. Nanjing Xinda Institute of Safety and Emergency Management, Nanjing 210044, Jiangsu, China

Received date: 2022-06-01

  Revised date: 2022-07-11

  Online published: 2023-02-24

摘要

本文利用黑河流域4个不同土地覆盖类型站点(分别为沙漠、玉米地、果园和蔬菜地)的微气象观测数据,分析非沙漠下垫面相比沙漠的冷却作用,对直接分解温度理论(Direct Decomposed Temperature Metric,DTM)和内在生物物理理论(Intrinsic Biophysical Mechanism,IBPM)进行能量闭合订正,对比两种理论的定量结果并研究干旱地区4种下垫面类型对地表温度的生物物理效应。在进行能量闭合订正之后,DTM理论与IBPM理论的计算结果都更加符合观测结果,尤其是夜间。订正后的IBPM方法计算出的温度差和观测的温度差更接近。IBPM理论结果表明与能量再分配有关的非辐射效应在白天发挥了非常重要的作用,空气动力学粗糙度(平均-4.97 K)和波文比项(平均-2.43 K)均可产生冷却作用,甚至超过了辐射效应(平均+5.21 K),DTM也有类似的结果。夜间直接生物物理效应比白天要弱,间接影响(环境背景差异)甚至可以超过直接影响。

本文引用格式

李尔晨 , 张羽 , 苑广辉 . 定量评估黑河流域4种下垫面类型对地表温度的影响[J]. 干旱区研究, 2023 , 40(1) : 30 -38 . DOI: 10.13866/j.azr.2023.01.04

Abstract

Micrometeorological observations at four sites in the Heihe River basin from June to September 2012 are used to evaluate the direct decomposed temperature metric (DTM) theory and the intrinsic biophysical mechanism (IBPM), as well as to investigate the biophysical effects of land use and land cover change on surface temperature. Through the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) project, the four sites were outfitted with Eddy Covariance Systems and other conventional weather instruments. The desert has the highest land surface temperature both daytime and nighttime. Compared to the desert site, the non-desert sites have average surface cooling effects of -17.8 K and -1.8 K during daytime and nighttime. Both the DTM and IBPM theories are founded on the surface energy balance equation; however, the energy balance ratios at the four sites range between 80% and 90% during the day and less than 30% at night. To revise the two theories, we distribute the imbalance term to the sensible and latent heat fluxes in proportion to the Bowen ratio. The biophysical effects of different types of land on surface temperature are then investigated by comparing the quantitative results of the two revised theories. The calculated surface temperature of DTM theory and IBPM theory agrees well with the observed results after forcing the energy balance closure to the fluxes, especially at night. The revised IBPM theory matches the observed results better than the revised DTM theory. The revised IBPM results show that the non-radiative effect related to the partitioning of available energy plays a significant role in the daytime cooling effect of non-desert sites. Changes in aerodynamic roughness (mean -4.97 K) and Bowen ratio (mean -2.43 K) both contribute a cooling signal during the day, and these cooling effects even outweigh the warming effects of the radiation term (mean +5.21 K). At night, the direct biophysical effects are weaker than during the day, and the indirect effects of the atmospheric background can even offset the direct biophysical effects.

参考文献

[1] 刘婉如, 陈春波, 罗格平, 等. 巴尔喀什湖流域土地利用/覆被变化过程与趋势[J]. 干旱区研究, 2021, 38(5): 1452-1463.
[1] [Liu Wanru, Chen Chunbo, Luo Geping, et al. Change processes and trends of land use/cover in the Balkhash Lake basin[J]. Arid Zone Research, 2021, 38(5): 1452-1463.]
[2] Lee X, Goulden M, Hollinger D, et al. Observed increase in local cooling effect of deforestation at higher latitudes[J]. Nature, 2011, 479(7373): 384-387.
[3] Juang J, Katul G, Siqueira M, et al. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States[J]. Geophysical Research Letters, 2007, 34(21): L21408. doi: 10.1029/2007GL031296.
[4] Zhang M, Lee X, Yu G, et al. Response of surface air temperature to small-scale land clearing across latitudes[J]. Environmental Research Letters, 2014, 9(3): 034002.
[5] Baldocchi D, Ma S. How will land use affect air temperature in the surface boundary layer? Lessons learned from a comparative study on the energy balance of an oak savanna and annual grassland in California, USA[J]. Tellus B: Chemical and Physical Meteorology, 2013, 65(1): 19994.
[6] Betts A, Desjardins R, Worth D, et al. Impact of land use change on the diurnal cycle climate of the Canadian Prairies[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(21): 11996-12011.
[7] Zhao K, Jackson R. Biophysical forcings of land-use changes from potential forestry activities in North America[J]. Ecological Monographs, 2014, 84(2): 329-353.
[8] Broucke S, Luyssaert S, Davin E, et al. New insights in the capability of climate models to simulate the impact of LUC based on temperature decomposition of paired site observations[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(11): 5417-5436.
[9] Luyssaert S, Jammet M, Stoy P, et al. Land management and land-cover change have impacts of similar magnitude on surface temperature[J]. Nature Climate Change, 2014, 4: 389-393.
[10] Claussen M, Brovkin V, Ganopolski A. Biogeophysical versus biogeochemical feedbacks of large-scale land cover change[J]. Geophysical Research Letters, 2001, 28(6): 1011-1014.
[11] Bounoua L, DeFries R, Collatz G, et al. Effects of land cover conversion on surface climate[J]. Climate Change, 2002, 52: 29-64.
[12] Campra P, Garcia M, Canton Y, et al. Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D18): 1044.
[13] Kueppers L, Snyder M, Sloan L, et al. Irrigation cooling effect: Regional climate forcing by land-use change[J]. Geophysical Research Letters, 2007, 34(3): 407-423.
[14] Lobell D, Bala G, Duffy P. Biogeophysical impacts of cropland management changes on climate[J]. Geophysical Research Letters, 2006, 33(6): 272-288.
[15] Zhang Y, Liu H, Foken T, et al. Coherent structures and flux contribution over an inhomogeneously irrigated cotton field[J]. Theoretical and Applied Climatology, 2011, 103: 119-131.
[16] Adegoke J, Roger S, Eastman J, et al. Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U. S. high plains[J]. Monthly Weather Review, 2003, 131(3): 556-564.
[17] Kalnay E, Cai M. Impact of urbanization and land use on climate change[J]. Nature, 2003, 423(6939): 528-531.
[18] McCarthy M, Best M, Betts R. Climate change in cities due to global warming and urban effects[J]. Geophysical Research Letters, 2010, 37(9): 232-256.
[19] Zhao L, Lee X, Smith R. et al. Strong contributions of local background climate to urban heat islands[J]. Nature, 2014, 511: 216-219. doi. org/10.1038/nature13462.
[20] Basara J, Hall P, Schroeder A, et al. Diurnal cycle of the Oklahoma City urban heat island[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D20109.
[21] Lin S, Feng J, Wang J, et al. Modeling the contribution of long-term urbanization to temperature increase in three extensive urban agglomerations in China[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(4): 1683-1697.
[22] Burakowski E, Tawfik A, Ouimette A, et al. The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States[J]. Agricultural and Forest Meteorology, 2018, 249(28): 367-376.
[23] Wang L, Lee X, Schultz N, et al. Response of surface temperature to afforestation in the Kubuqi Desert, Inner Mongolia[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 948-964.
[24] Zhao L, Lee X, Smith R, et al. Strong contributions of local background climate to urban heat islands[J]. Nature, 2014, 511(7508): 216-219.
[25] Chen L, Dirmeyer P A. Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling[J]. Environmental Research Letters, 2016, 11(3): 034002. doi: 10.1088/1748-9326/11/3/034002.
[26] Davin E, Noblet-Ducoudré N. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes[J]. Journal of Climate, 2010, 23(1): 97-112.
[27] Bonan G, Pollard D, Thompson S. Effects of boreal forest vegetation on global climate[J]. Nature, 1992, 359(6397): 716-718.
[28] Bright R, Davin E, O’Halloran T, et al. Local temperature response to land cover and management change driven by non-radiative processes[J]. Nature Climate Change, 2017, 7(4): 296-302.
[29] Rigden A, Li D. Attribution of surface temperature anomalies induced by land use and land cover changes[J]. Geophysical Research Letters, 2017, 44(13): 6814-6822.
[30] Perugini L, Caporaso L, Marconi S, et al. Biophysical effects on temperature and precipitation due to land cover change[J]. Environmental Research Letters, 2017, 12(5): 053002.
[31] Peng S, Piao S, Zeng Z, et al. Afforestation in China cools local land surface temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 2915-2919.
[32] 曹永香, 毛东雷, 薛杰, 等. 绿洲-沙漠过渡带植被覆盖动态变化及其驱动因素——以新疆策勒为例[J]. 干旱区研究, 2022, 39(2): 510-521.
[32] [Cao Yongxiang, Mao Donglei, Xue Jie, et al. Dynamic changes and driving factors of vegetation cover in the oasis-desert ecotone: A case study of Cele, Xinjiang[J]. Arid Zone Research, 2022, 39(2): 510-521.]
[33] Duveiller G, Hooker J, Cescatti A. The mark of vegetation change on Earth’s surface energy balance[J]. Nature Communication, 2018, 9: 679. doi: 10.1038/s41467-017-02810-8.
[34] Li Y, Zhao M, Motesharrei S. et al. Local cooling and warming effects of forests based on satellite observations[J]. Nature Communication, 2015, 6: 6603. doi: 10.1038/ncomms7603.
[35] Schultz N, Lawrence P, Lee X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation[J]. Journal of Geophysical Research Biogeosciences, 2017, 122(4): 903-917.
[36] Ge J, Guo W, Pitman A, et al. The nonradiative effect dominates local surface temperature change caused by afforestation in China[J]. Journal of Climate, 2019, 32(14): 4445-4471.
[37] Williams M, Richardson A, Reichstein M, et al. Improving land surface models with FLUXNET data[J]. Biogeosciences, 2009, 6(7): 1341-1359.
[38] Xu Z, Liu S, Li X, et al. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(23): 13140-13157.
[39] Li X, Cheng G, Liu S, et al. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of American Meteorological Society, 2013, 94(8): 1145-1160.
[40] Twine T, Kustas W, Norman J, et al. Correcting eddy-covariance flux underestimates over a grassland[J]. Agricultural and Forest Meteorology, 2000, 103(3): 279-300.
[41] 阳坤, 王介民. 一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J]. 中国科学: 地球科学, 2008, 38(2): 243-250.
[41] [Yang Kun, Wang Jiemin. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J]. Scientia Sinica(Terrae), 2008, 38(2): 243-250.]
文章导航

/