水土资源

鄂尔多斯市土壤侵蚀时空演变及影响因子分析

展开
  • 1.中国矿业大学资源枯竭矿区土地修复与生态演替教育部野外科学观测研究站,江苏 徐州 221116
    2.中国矿业大学环境与测绘学院,江苏 徐州 221116
    3.中国矿业大学公共管理学院,江苏 徐州 221116
赵蒙恩(1997-),女,硕士研究生,主要研究方向为自然地理环境演变. E-mail: 1427277041@qq.com

收稿日期: 2022-05-04

  修回日期: 2022-08-24

  网络出版日期: 2023-01-17

基金资助

中央高校基本科研业务费专项资金资助(2021ZDPY0205);内蒙古自治区科技计划项目(2060399-273);国家自然科学基金项目(51874306)

Analysis of temporal and spatial evolution and influencing factors of soil erosion in Ordos City

Expand
  • 1. Observation and Research Station of Ministry of Education for Resource Exhausted Mining Area Land Restoration and Ecological Succession, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    2. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    3. School of Public Policy & Management, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

Received date: 2022-05-04

  Revised date: 2022-08-24

  Online published: 2023-01-17

摘要

精确评估鄂尔多斯市土壤侵蚀时空变化并研究其影响因子,为该区域生态环境治理与矿区的水土保持提供参考。本文运用RUSLE模型和地理探测器方法,研究2000—2019年鄂尔多斯市土壤水力侵蚀状况,并分析其影响因子。结果表明:(1) 鄂尔多斯市2000年,2005年,2010年,2015年以及2019年的平均土壤侵蚀量分别为3865.49 t·km-2·a-1,2932.85 t·km-2·a-1,2890.21 t·km-2·a-1,3711.10 t·km-2·a-1,4308.21 t·km-2·a-1,在研究的20 a间平均土壤侵蚀量先减后增,采矿活动的增加是土壤侵蚀加重的主要原因。(2) 煤矿区20 km缓冲区内的土壤侵蚀情况向好的方向发展,矿区的生态治理措施有效且可行。(3) 坡度对鄂尔多斯市土壤侵蚀的解释力最强,被认定为主导因子,因子间的协同作用对土壤侵蚀的解释力有所增强。鄂尔多斯市土壤侵蚀情况以微度和轻度侵蚀为主,>35°坡度区间、0~0.3植被覆盖度区间和工矿用地是易发生土壤侵蚀的区域。因此,适当增加植被覆盖可以有效地防治水土流失。

本文引用格式

赵蒙恩,闫庆武,刘政婷,王文铭,李桂娥,吴振华 . 鄂尔多斯市土壤侵蚀时空演变及影响因子分析[J]. 干旱区研究, 2022 , 39(6) : 1819 -1831 . DOI: 10.13866/j.azr.2022.06.12

Abstract

The spatial-temporal variation and influencing factors of soil erosion in Ordos City were studied to provide a reference for ecological environment management and soil and water conservation in mining areas. Based on the RUSLE model and geographic detector method, hydraulic soil erosion in Ordos City from 2000 to 2019 was studied, and its influencing factors were analyzed in this paper. The results showed that: (1) The average soil erosion in 2000, 2005, 2010, 2015, and 2019 was 3865.49 t·km-2·a-1, 2932.85 t·km-2·a-1, 2890.21 t·km-2·a-1, 3711.10 t·km-2·a-1, 4308.21 t·km-2·a-1, respectively. The average soil erosion decreased first and then increased during the 20 years. Increased mining activity was the main reason for the increased soil erosion. (2) The soil erosion in the 20 km buffer zone of the coal mine area developed in a good direction, and the ecological control measures in the mining area were effective and feasible. (3) Slope had the strongest explanatory power on soil erosion in Ordos City and was identified as the leading factor. The synergy of the two factors had enhanced the explanatory power for soil erosion. The soil erosion situation in Ordos City was mainly slight and mild erosion. >35° slope interval, 0-0.3 vegetation coverage interval, and industrial and mining land was an area prone to soil erosion. Therefore, increasing vegetation coverage can effectively prevent soil erosion.

参考文献

[1] 颜世敏, 马阔. 土壤侵蚀影响因素及其危害分析[J]. 江西农业, 2019(6): 67.
[1] [ Yan Shimin, Ma Kuo. Analysis on influencing factors and hazards of soil erosion[J]. Jiangxi Agriculture, 2019(6): 67. ]
[2] 陈朝良, 赵广举, 穆兴民, 等. 基于RUSLE模型的湟水流域土壤侵蚀时空变化[J]. 水土保持学报, 2021, 35(4): 73-79.
[2] [ Chen Chaoliang, Zhao Guangju, Mu Xingmin, et al. Spatial-temporal change of soil erosion in Huangshui Watershed based on RUSLE model[J]. Journal of Soil and Water Conservation, 2021, 35(4): 73-79. ]
[3] 张素, 熊东红, 吴汉, 等. 基于RUSLE模型的孙水河流域土壤侵蚀空间分异特征[J]. 水土保持学报, 2021, 35(5): 24-30.
[3] [ Zhang Su, Xiong Donghong, Wu Han, et al. Research on spatial variation of soil erosion in Sunshui River Basin based on RUSLE model[J]. Journal of Soil and Water Conservation, 2021, 35(5): 24-30. ]
[4] Islam M R, Wan Z, Lai S H, et al. Development of an erosion model for Langat River Basin, Malaysia, adapting GIS and RS in RUSLE[J]. Applied Water Science, 2020, 10(7): 1-11.
[5] Melese T, Senamaw A, Belay T, et al. The spatiotemporal dynamics of land use land cover change, and its impact on soil erosion in Tagaw Watershed, Blue Nile Basin, Ethiopia[J]. Global Challenges, 2021, 5(7): 1-13.
[6] Alitane A, Essahlaoui A, Hafyani M E, et al. Water erosion monitoring and prediction in response to the effects of climate change using RUSLE and SWAT equations: Case of R’Dom Watershed in Morocco[J]. Land, 2022, 11(1): 93.
[7] 贾磊, 姚顺波, 邓元杰, 等. 渭河流域土壤侵蚀时空特征及其地理探测[J]. 生态与农村环境学报, 2021, 37(3): 305-314.
[7] [ Ja Lei, Yao Shunbo, Deng Yuanjie, et al. Temporal and spatial characteristics of soil erosion risk in Weihe River Basin and its geographical exploration[J]. Journal of Ecology and Rural Environment, 2021, 37(3): 305-314. ]
[8] 田义超, 黄远林, 张强, 等. 北部湾钦江流域土壤侵蚀及其硒元素流失评估[J]. 中国环境科学, 2019, 39(1): 257-273.
[8] [ Tian Yichao, Huang Yuanlin, Zhang Qiang, et al. Soil erosion and selenium loss in Qinjiang River Basin in Beibu Gulf coastal zone[J]. China Environmental Science, 2019, 39(1): 257-273. ]
[9] Mhaske S N, Pathak K, Dash S S, et al. Assessment and management of soil erosion in the hilltop mining dominated catchment using GIS integrated RUSLE model[J]. Journal of Environmental Management, 2021, 294(11): 112987.
[10] 王慧子. 经济新常态下煤炭经济的发展问题及对策——以内蒙古为例[J]. 内蒙古科技与经济, 2020(18): 51-52.
[10] [ Wang Huizi. Development problems and countermeasures of coal economy under the new normal of economy: Taking Inner Mongolia as an example[J]. Inner Mongolia Science Technology & Economy, 2020(18): 51-52. ]
[11] 白壮壮, 崔建新, 丁晓辉. 1986—2015年鄂尔多斯高原沙漠化及其驱动因素研究[J]. 干旱区研究, 2020, 37(3): 749-756.
[11] [ Bai Zhuangzhuang, Cui Jianxin, Ding Xiaohui. Desertification and its driving factors in the Ordos Plateau, from 1986 to 2015[J]. Arid Zone Research, 2020, 37(3): 749-756. ]
[12] 陈佳锐, 叶子瑜, 张照熙, 等. 基于超效率BCC-DEA模型西部城市产业园国土空间利用绩效评价——以鄂尔多斯市为例[J]. 上海国土资源, 2021, 42(2): 44-48, 94.
[12] [ Chen Jiarui, Ye Ziyu, Zhang Zhaoxi, et al. Performance evaluation of land and space utilization of industrial parks in western cities based on the super efficiency BCC-DEA model: A case study of Ordos City[J]. Shanghai Land & Resources, 2021, 42(2): 44-48, 94. ]
[13] 陶鸿斌, 汪文飞. 基于GIS分析土壤侵蚀过程中氮磷流失分布——以定西市安定区为例[J]. 绿色科技, 2018(24): 15-17, 19.
[13] [ Tao Hongbin, Wang Wenfei. Analysis of nitrogen and phosphorus losses in soil erosion process based on GIS: Taking Dingxi city Anding district as an example[J]. Journal of Green Science and Technology, 2018(24): 15-17, 19. ]
[14] 章文波, 付金生. 不同类型雨量资料估算降水侵蚀力[J]. 资源科学, 2003, 25(1): 35-41.
[14] [ Zhang Wenbo, Fu Jinsheng. Rainfall erosivity estimation under different rainfall amount[J]. Resources Science, 2003, 25(1): 35-41. ]
[15] 胡刚, 宋慧, 石星军, 等. 基于RUSLE的卧虎山水库流域土壤侵蚀特征分析[J]. 地理科学, 2018, 38(4): 610-617.
[15] [ Hu Gang, Song Hui, Shi Xingjun, et al. Soil erosion characteristics based on RUSLE in the Wohushan Reservoir Watershed[J]. Scientia Geographica Sinica, 2018, 38(4): 610-617. ]
[16] Williams J R, Renard K G, Dyke P T. EPIC: A new method for assessing erosion’s effect on soil productivity[J]. Journal of Soil & Water Conservation, 1983, 38(5): 381-383.
[17] Foster G R, Mccool D K, Renard K G, et al. Conversion of the universal soil los equation to SI metric units[J]. Journal of Soil and Water Conservation, 1981, 36(6): 355-359.
[18] 张园眼, 李天宏. 基于GIS和RUSLE模型的深圳市土壤侵蚀研究[J]. 应用基础与工程科学学报, 2018, 26(6): 1189-1202.
[18] [ Zhang Yuanyan, Li Tianhong. Soil erosion in Shenzhen city based on GIS and RUSLE model[J]. Journal of Basic Science and Engineering, 2018, 26(6): 1189-1202. ]
[19] Renard K G, Foster G R, Weesies G A, et al. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE)[M]. Washington DC: United States Department of Agriculture, 1997: 143-182.
[20] Mccool D K, Brown L C, Foster G R, et al. Revised slope steepness factor for the universal soil loss equation[J]. Transactions of the ASAE, 1987, 30(5): 1387-1396.
[21] Liu B Y, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes[J]. Transactions of the ASAE, 1994, 37(6): 1835-1840.
[22] 陈童尧, 贾燕锋, 王佳楠, 等. 基于InVEST模型的祁连山国家级自然保护区土壤保持现状与功能[J]. 干旱区研究, 2020, 37(1): 150-159.
[22] [ Chen Tongyao, Jia Yanfeng, Wang Jianan, et al. Current situation and function of soil conservation in national nature reserves in the Qilian Mountains based on InVEST model[J]. Arid Zone Research, 2020, 37(1): 150-159. ]
[23] 蔡崇法, 丁树文, 史志华, 等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000, 14(2): 19-24.
[23] [ Cai Chongfa, Ding Shuwen, Shi Zhihua, et al. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed[J]. Joumal of Soil and Water Conservation, 2000, 14(2): 19-24. ]
[24] 尹璐. 扎赉诺尔矿区土地利用格局及其土地退化演变分析[D]. 徐州: 中国矿业大学, 2016.
[24] [ Yin Lu. The Analysis of Land Use and Degradation Changes in Zhalainur Mining Area[D]. Xuzhou: China University of Mining and Technology, 2016. ]
[25] 周平, 蒙吉军. 鄂尔多斯市1988—2000年土壤水力侵蚀与土地利用时空变化关系[J]. 自然资源学报, 2009, 24(10): 1706-1717.
[25] [ Zhou Ping, Meng Jijun. The temporal and spatial variability relationship of soil water erosion and land use type in Ordos during the period of 1988-2000[J]. Journal of Natural Resources, 2009, 24(10): 1706-1717. ]
[26] 黄婷, 于德永, 乔建民, 等. 内蒙古锡林郭勒盟景观格局变化对土壤保持能力的影响[J]. 资源科学, 2018, 40(6): 1256-1266.
[26] [ Huang Ting, Yu Deyong, Qiao Jianmin, et al. Landscape pattern change and soil conservation in Xilingol League, Inner Mongolia[J]. Resources Science, 2018, 40(6): 1256-1266. ]
[27] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
[27] [ Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. ]
[28] 邹雅婧, 闫庆武, 谭学玲, 等. 渭北矿区土壤侵蚀评估及驱动因素分析[J]. 干旱区地理, 2019, 42(6): 1387-1394.
[28] [ Zou Yajing, Yan Qingwu, Tan Xueling, et al. Evaluation of soil erosion and driving factors analysis in Weibei mining area[J]. Arid Land Geography, 2019, 42(6): 1387-1394. ]
[29] 中华人民共和国水利部. 土壤侵蚀分类分级标准(SL190-2007)[S]. 北京: 中国水利水电出版社, 2008.
[29] [ Ministry of Water Resources of the People’s Republic of China. Standards for Classification and Gradation of Soil Erosion (SL190-2007)[S]. Beijing: China Water & Power Press, 2008. ]
[30] 刘英, 魏嘉莉, 岳辉, 等. 神东矿区土壤侵蚀时空特征及驱动力分析[J]. 测绘科学, 2022, 47(1): 142-153.
[30] [ Liu Ying, Wei Jiali, Yue Hui, et al. Analysis on temporal and spatial characteristics and driving factors of soil erosion in Shendong mining area[J]. Science of Surveying and Mapping, 2022, 47(1): 142-153. ]
[31] 张珊珊, 周忠发, 孙小涛, 等. 基于坡度等级的喀斯特山区石漠化与水土流失相关性研究——以贵州省盘县为例[J]. 水土保持学报, 2017, 31(2): 79-86.
[31] [ Zhang Shanshan, Zhou Zhongfa, Sun Xiaotao, et al. Based on the slope grade of rocky desertification and water and soil loss correlation study in Karst Mountain Area: A case in Panxian county, Guizhou[J]. Journal of Soil and Water Conservation, 2017, 31(2): 79-86. ]
文章导航

/