天气与应用气候

贺兰山东麓20次暴雨过程环流形势及低空急流特征

展开
  • 1.兰州大学大气科学学院,甘肃 兰州 730000
    2.河北省气候中心,河北 石家庄 050000
    3.中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室,宁夏 银川 750002
李超(1998-),男,硕士研究生,主要从事中尺度大气动力学和中尺度数值天气预报研究. E-mail: lich20@lzu.edu.cn

收稿日期: 2022-06-07

  修回日期: 2022-08-15

  网络出版日期: 2023-01-17

基金资助

国家自然科学基金(41965001);宁夏回族自治区科技创新领军人才培养工程(2021GKLRLX05)

Circulation pattern and LLJ characteristics of 20 rainstorm events in the eastern region of the Helan Mountain

Expand
  • 1. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
    2. Hebei Climate Centre, Shijiazhuang 050000, Hebei, China
    3. Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, CMA, Yinchuan 750002, Ningxia, China

Received date: 2022-06-07

  Revised date: 2022-08-15

  Online published: 2023-01-17

摘要

贺兰山东麓是中国西北极端暴雨易发区之一,为了进一步探究该地区暴雨发生时大气环流配置及低空急流系统演变特征,提高该地区暴雨预报准确率及防灾减灾能力,本文利用加密地面降水观测资料和NCEP/NCAR再分析资料,对2009—2020年贺兰山东麓20次暴雨事件的形成机理进行了综合分析。结果表明:(1) 依据500 hPa环流形势特征可将该地区20次暴雨过程分为高空槽前型和西太平洋副热带高压西北侧型。高空槽前型降水是在高空西风槽影响下,配合高空急流及低空水汽辐合场发生与维持,副高西北侧型降水过程中贺兰山东麓位于西太平洋副热带高压西北侧,副高边缘带来充沛水汽,高低空动力辐合配合使得该类降水强度更强。(2) 两类降水过程对应的低空急流系统存在明显差异,副高西北侧型降水其低空急流呈北进增强-南退减弱特点,急流轴在贺兰山体左侧,在暴雨过程中起到了水汽输送及增大迎风坡风速等作用。(3) 高空槽前型降水过程中低空急流多呈东移减弱特点,急流轴位于山体右侧,低空急流动力作用所产生的中尺度气旋的发展演变对此类暴雨的触发与维持起到重要作用。

本文引用格式

李超,隆霄,曹怡清,王思懿,韩子霏,王晖 . 贺兰山东麓20次暴雨过程环流形势及低空急流特征[J]. 干旱区研究, 2022 , 39(6) : 1753 -1767 . DOI: 10.13866/j.azr.2022.06.06

Abstract

The eastern region of the Helan Mountain is an area prone to extreme rainstorms in Northwest China. To further explore the distribution of circulation patterns and evolution characteristics of the low-level jet systems during a rainstorm occurrence in this region and improve the accuracy of rainstorm forecasts and the ability of disaster prevention and mitigation in this region. Based on the encrypted surface precipitation observation and NCEP/NCAR reanalysis data, this paper comprehensively analyzed the formation mechanism of 20 heavy rainfall events in the eastern piedmont of the Helan Mountain from 2009 to 2020. The results show that: According to the characteristics of the 500 hPa circulation situation, the main rainstorm processes in this area can be classified into two: “Northwest side of the subtropical high” and “In front of upper trough” category rainstorm. The rainstorm of “In front of upper trough” category occurs under the combined action of the high-altitude westerly trough, the high-altitude jet stream, and the low-altitude water vapor convergence field. During the precipitation process on the northwest side of the subtropical high, the eastern foot of Helan Mountain is located on the northwest side of the western Pacific subtropical high. The edge of the subtropical high brings abundant water vapor, and the combination of high and low-altitude dynamics strengthens this type of precipitation. Obvious differences exist in the LLJ systems corresponding to the two types of precipitation processes. During the precipitation process of the “Northwest side of the subtropical high” category, the LLJ shows the characteristics of northward intensification and southward retreat and weakening. The LLJ axis is mainly located on the left side of the Helan Mountains. Its main effect on such rainstorm process is reflected in the transport of water vapor and the increased wind speed on the windward slope. “In front of upper trough” category rainstorm’s LLJ is characterized by eastward movement and weakening, and the jet axis is mostly located on the right side of the Helan Mountains. The development and evolution of mesoscale cyclones generated by LLJ dynamics play an important role in triggering and maintaining such rainstorms.

参考文献

[1] 刘燕飞, 隆霄, 王晖. 陕西中西部地区一次暴雨过程的数值模拟研究[J]. 高原气象, 2015, 34(2): 378-388.
[1] [ Liu Yanfei, Long Xiao, Wang Hui. Numerical simulation studies on a rainstorm in central western Shaanxi Province[J]. Plateau Meteorology, 2015, 34(2): 378-388. ]
[2] 庄晓翠, 李博渊, 秦榕, 等. 新疆东部一次区域极端暴雨环境场特征[J]. 高原气象, 2020, 39(5): 947-959.
[2] [ Zhuang Xiaocui, Li Boyuan, Qin Rong, et al. Analysis on the causes of an extreme rainstorm in the eastern Xinjiang[J]. Plateau Meteorology, 2020, 39(5): 947-959. ]
[3] 冯建民, 胡文东, 陈楠, 等. 宁夏天气预报手册[M]. 北京: 气象出版社, 2012: 12-14.
[3] [ Feng Jianmin, Hu Wendong, Chen Nan, et al. Ningxia Weather Forecast Manual[M]. Beijing: China Meteorological Press, 2012: 12-14. ]
[4] 李江萍, 李俭峰, 杜亮亮. 近50年夏季西北暴雨特征和水汽轨迹分析[J]. 兰州大学学报(自然科学版), 2013, 49(4): 474-482.
[4] [ Li Jiangping, Li Jianfeng, Du Liangliang. General situation of heavy rain in Northwest China and analysis of a case[J]. Journal of Lanzhou University (Natural Sciences Edition), 2013, 49(4): 474-482. ]
[5] 陈豫英, 陈楠, 任小芳, 等. 贺兰山东麓罕见特大暴雨的预报偏差和可预报性分析[J]. 气象, 2018, 44(1): 159-169.
[5] [ Chen Yuying, Chen Nan, Ren Xiaofang, et al. Analysis on forecast deviation and predictability of a rare severe rainstorm along the eastern Helan Mountain[J]. Meteorological Monthly, 2018, 44(1): 159-169. ]
[6] 陶林科, 杨侃, 胡文东, 等. “7·30”大暴雨的数值模拟及贺兰山地形影响分析[J]. 沙漠与绿洲气象, 2014, 8(4): 32-39.
[6] [ Tao Linke, Yang Kan, Hu Wendong, et al. The contribution of Helan Mountain to the formation of a heavy rainstorm occurred over Yinchuan Plain by numerical simulation[J]. Desert and Oasis Meteorology, 2014, 8(4): 32-39. ]
[7] 陈晓娟, 王咏青, 毛璐, 等. 贺兰山区两次极端暴雨动力作用数值模拟分析[J]. 干旱区研究, 2020, 37(3): 680-688.
[7] [ Chen Xiaojuan, Wang Yongqing, Mao Lu, et al. Numerical simulation analysis of the dynamic effects of terrain on two extreme rainstorms on Helan Mountain[J]. Arid Zone Research, 2020, 37(3): 680-688. ]
[8] 纪晓玲, 冯建民, 穆建华, 等. 宁夏北部一次短时暴雨中尺度对流系统的特征分析[J]. 大气科学学报, 2010, 33(6): 711-718.
[8] [ Ji Xiaoling, Feng Jianmin, Mu Jianhua, et al. Analysis on characteristics of mesoscale convective system during a short-term rainstorm processin North of Ningxia[J]. Transactions of Atmospheric Sciences, 2010, 33(6): 711-718. ]
[9] 陈豫英, 苏洋, 杨银, 等. 贺兰山东麓极端暴雨的中尺度特征[J]. 高原气象, 2021, 40(1): 47-60.
[9] [ Chen Yuying, Su Yang, Yang Yin, et al. The mesoscale characteristics of extreme rainstorm in the eastern region of Helan Mountain[J]. Plateau Meteorology, 2021, 40(1): 47-60. ]
[10] 胡文东, 杨侃, 黄小玉, 等. 一次阵风锋触发强对流过程雷达资料特征分析[J]. 高原气象, 2015, 34(5): 1452-1464.
[10] [ Hu Wendong, Yang Kai, Huang Xiaoyu, et al. Analysis on a severe convection triggered by gust front in Yinchuan with radar data[J]. Plateau Meteorology, 2015, 34(5): 1452-1464. ]
[11] Bonner W D. Climatology of the low level jet[J]. Monthly Weather Review, 1968, 96(12): 833-850.
[12] 许美玲, 段旭, 孙绩华, 等. 与低空急流相伴的暴雨天气诊断分析[J]. 云南大学学报(自然科学版), 2004, 26(4): 320-324.
[12] [ Xu Meiling, Duan Xu, Sun Jihua, et al. Diagnostic study on the torrential rains coupling with the lower southwest jets in Yunnan[J]. Journal of Yunnan University(Natural Sciences Edition), 2004, 26(4): 320-324. ]
[13] 张云, 雷恒池, 钱贞成. 一次东北冷涡衰退阶段暴雨成因分析[J]. 大气科学, 2008, 32(3): 481-498.
[13] [ Zhang Yun, Lei Hengchi, Qian Zhencheng. Analyses of formation mechanisms of a rainstorm during the declining phase of a northeast cold vortex[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(3): 481-498. ]
[14] 赛瀚, 苗峻峰. 中国地区低空急流研究进展[J]. 气象科技, 2012, 40(5): 766-771.
[14] [ Han Han, Miao Junfeng. A review of low-level jet research in China[J]. Meteorological Science and Technology, 2012, 40(5): 766-771. ]
[15] 周静, 郑永骏, 苗春生, 等. 梅雨锋强降水与低空急流日变化的观测分析和数值模拟[J]. 热带气象学报, 2017, 33(5): 750-761.
[15] [ Zhou Jing, Zheng Yongjun, Miao Chunsheng, et al. The characteristics and numerical simulation of diurnal variations of low-level jet and Meiyu front heavy rainfall[J]. Journal of Tropical Meteorology, 2017, 33(5): 750-761. ]
[16] 陈玉春, 钱正安. 夏季青藏高原地形对其东侧低空急流动力影响的数值模拟[J]. 高原气象, 1993, 12(3): 312-321.
[16] [ Chen Yuchun, Qian Zhengan. Numerical simulations of dynamical impact of Qinghai-Xizang plateau on lower-level jet on its east side in summer[J]. Plateau Meteorology, 1993, 12(3): 312-321. ]
[17] 陈贵川, 沈桐立, 何迪. 江南丘陵和云贵高原地形对一次西南涡暴雨影响的数值试验[J]. 高原气象, 2006, 25(2): 277-284.
[17] [ Chen Guichuan, Shen Tongli, He Di. Simulation of topographic effect of hilly region to the south of yangtze river and Yunnan-Guizhou Plateau on the Southwest vortex during a heavy rain process[J]. Plateau Meteorology, 2006, 25(2): 277-284. ]
[18] Blackadar A K. Boundary layer wind maxima and their significance for the growth of nocturnal inversions[J]. Bulletin of the American Meteorological Society, 1957, 38(5): 283-290.
[19] Du Y, Rotunno R. A simple analytical model of the nocturnal low-level jet over the great plains of the United States[J]. Journal of Atmospheric Sciences, 2014, 71(10): 3674-3683.
[20] 陶诗言. 中国之暴雨[M]. 北京: 科学出版社, 1980: 225.
[20] [ Tao Shiyan. Torrential Rain in China[M]. Beijing: Science Press, 1980: 225. ]
[21] 朱乾根, 林锦瑞, 寿邵文, 等. 天气学原理和方法[M]. 北京: 科学出版社, 2007: 485-492.
[21] [ Zhu Qiangen, Lin Jinrui, Shou Shaowen, et al. Synoptic Principles and Methods[M]. Beijing: Science Press, 2007: 485-492. ]
[22] 孙颖姝. 低空急流与新疆强降水的关系[D]. 南京: 南京信息工程大学, 2019.
[22] [ Sun Yingshu. The Relationship between Low-level Jet and Heavy Precipitation in Xinjiang[D]. Nanjing: Nanjing University of Information Science and Technology, 2019. ]
[23] 李佳. 初夏华南低空急流及其日变化对华南降水的影响[D]. 南京: 南京信息工程大学, 2021.
[23] [ Li Jia. Effect of Low-level Jet over South China and Diurnal Variation on Precipitation in South China in Early Summer[D]. Nanjing: Nanjing University of Information Science and Technology, 2021. ]
[24] 黄嘉佑. 气象统计分析与预报方法[M]. 北京: 气象出版社, 1990: 46-130.
[24] [ Huang Jiayou. Meteorological Statistical Analysis and Forecasting Methods[M]. Beijing: China Meteorological Press, 1990: 46-130. ]
[25] 倪丽霞, 王建英, 陶林科, 等. 加密自动站资料在吴忠强对流天气预报中的应用[J]. 宁夏工程技术, 2014, 13(2): 102-107.
[25] [ Ni Lixia, Wang Jianying, Tao Linke, et al. Application of automatic data encryption station in Wuzhong strong convective weather forecast[J]. Ningxia Engineering Technology, 2014, 13(2): 102-107. ]
[26] 邵建, 裴晓蓉, 刘娟, 等. 近53 a宁夏暴雨时空分布特征[J]. 干旱气象, 2015, 33(4): 595-601.
[26] [ Shao Jian, Pei Xiaorong, Liu Juan, et al. Temporal and spatial distribution characteristics of rainstorms in Ningxia during 1961-2013[J]. Arid Meteorology, 2015, 33(4): 595-601. ]
[27] 《西北暴雨》编写组. 西北暴雨[M]. 北京: 气象出版社, 1992.
[27] [ Editorial Group of ‘Northwest Rainstorm’. Northwest Rainstorm[M]. Beijing: China Meteorological Press, 1992. ]
[28] 黄玉霞, 王宝鉴, 黄武斌, 等. 我国西北暴雨的研究进展[J]. 暴雨灾害, 2019, 38(5): 11.
[28] [ Huang Yuxia, Wang Baojian, Huang Wubin, et al. A review on rainstorm research in Northwest China[J]. Torrential Rain and Disasters, 2019, 38(5): 11. ]
[29] Wang D Q, Zhang Y C, Huang A N. Climatic features of the south-westerly low-level jet over Southeast China and its association with precipitation over East China[J]. Asia-pacific Journal of Atmospheric Sciences, 2003, 49(3): 259-270.
[30] 丁一汇. 高等天气学[M]. 北京: 气象出版社, 2005: 309-523.
[30] [ Ding Yihui. Advanced Synoptic Science[M]. Beijing: China Meteorological Press, 2005: 309-523. ]
[31] 王遂缠, 胡向军, 张新荣, 等. 雷达资料同化在甘肃局地暴雨天气个例中的应用[J]. 高原气象, 2011, 30(3): 711-718.
[31] [ Wang Suichan, Hu Xiangjun, Zhang Xinrong, et al. Application of doppler radar data assimilation in a local rainstorm case in Gansu province[J]. Plateau Meteorology, 2011, 30(3): 711-718. ]
[32] 孔祥伟, 杨建才, 李红, 等. 甘肃河东地区不同环流形势下短时强降水的雷达回波特征分析[J]. 高原气象, 2021, 40(5): 1057-1070.
[32] [ Kong Xiangwei, Yang Jiancai, Li Hong, et al. Analysis of radar echo characteristics of short-term heavy precipitation weather with different circulation pattern in East Gansu Province[J]. Plateau Meteorology, 2021, 40(5): 1057-1070.]
[33] 李巧, 戚友存, 朱自伟, 等. 复杂地形下C波段雷达定量降水估计算法[J]. 气象学报, 2021, 79(4): 689-702.
[33] [ Li Qiao, Qi Youcun, Zhu Ziwei, et al. Quantitative precipitation estimation algorithm for C-band radar situated in complex topographical regions[J]. Acta Meteorologica Sinica, 2021, 79(4): 689-702. ]
[34] 韩文宇, 杨丽丽, 杨毅. C波段雷达资料在强降水过程中的应用[J]. 干旱气象, 2016, 34(1): 154-162.
[34] [ Han Wenyu, Yang Lili, Yang Yi. Application of C-band weather radar data in heavy precipitation process[J]. Journal of Arid Meteorology, 2016, 34(1): 154-162. ]
文章导航

/