植物生态

旱榆幼树对土壤失水及复水的生理响应过程研究

展开
  • 1.内蒙古农业大学沙漠治理学院,荒漠生态系统保护与修复国家林业局重点实验室,内蒙古 呼和浩特 010010
    2.内蒙古农业大学草原与资源环境学院,内蒙古 呼和浩特 010010
赵子涵(1997-),女,硕士研究生,主要从事植物逆境生理方面的研究. E-mail: 3037172860@qq.com

收稿日期: 2022-02-07

  修回日期: 2022-04-23

  网络出版日期: 2022-10-25

基金资助

内蒙古农业大学高层次人才引进科研启动项目(NDYB2017-12);内蒙古自然科学基金(2018BS03003);自治区科技计划应用研发项目(2019GG004)

Physiological responses of a young Gansu elm (Ulmus glaucescens) to soil water loss and rehydration

Expand
  • 1. College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Key Laboratory of Desert Ecosystem Restoration and Protection, Hohhot 010011, Inner Mongolia, China
    2. College of Grassland and Environmental Resources, Inner Mongolia Agricultural University, Hohhot 010011, Inner Mongolia, China

Received date: 2022-02-07

  Revised date: 2022-04-23

  Online published: 2022-10-25

摘要

干旱区造林后幼树对土壤水分的生理响应过程对其进行水分管理并决定其成活的重要前提,以旱榆(Ulmus glaucescens)幼树为试材,采用盆栽自然失水和复水的方法,研究旱榆幼树形态、生理及光合特性对不同土壤失水程度及复水的响应过程,以期为栽培旱榆的水分管理提供理论依据。结果表明:(1) 在土壤失水较少时(土壤含水量为15%),旱榆叶片相对含水量、叶绿素含量和水分利用效率表现出小幅升高,分别较试验前增加了14.8%、1.2%、43.2%;叶片的净光合速率、气孔导度、蒸腾速率呈明显下降趋势,分别较试验前降低了26.5%、27.1%、48.7%;(2) 土壤失水量严重时(土壤含水量为0%),旱榆叶片相对含水量、叶绿素含量和水分利用效率大幅下降,分别较试验前下降了78.4%、65.4%、47.3%;叶片的净光合速率、气孔导度、蒸腾速率均表现为缓慢降低,分别较试验前降低了89.9%、83.3%、79.9%;光合速率下降的主要原因之一是气孔导度的变化。(3) 复水可以缓解土壤失水对旱榆的不利影响。因此,在土壤持续失水环境下,旱榆通过一系列形态、生理和光合特性的变化来适应土壤含水量的下降,表现出较强的耐旱性,旱榆栽植后如遇严重土壤失水的情况,复水可以缓解对其造成的危害。

本文引用格式

赵子涵,王树森,罗于洋,刘瑞香,韩峰,马迎梅 . 旱榆幼树对土壤失水及复水的生理响应过程研究[J]. 干旱区研究, 2022 , 39(5) : 1534 -1542 . DOI: 10.13866/j.azr.2022.05.18

Abstract

The physiological responses of young trees to soil water after afforestation in arid areas are important factors in water management and their survival. To provide a theoretical basis for water management in the cultivation of Gansu elm trees (Ulmus glaucescens), we analyzed the responses of morphology, physiology, and photosynthetic characteristics of young Gansu elm trees to different degrees of soil water loss and rehydration by using the potted method under mimicking natural water loss and rehydration conditions. The results showed that relative water content, chlorophyll content, and water use efficiency of Gansu elm leaves increased slightly by 14.8%, 1.2%, and 43.2%, respectively when the soil water loss was less (15%). The net photosynthetic rate, stomatal conductance, and transpiration rate of leaves decreased significantly by 26.5%, 27.1%, and 48.7%, respectively. When soil water content was at its lowest point (0%), the relative water content, chlorophyll content, and water use efficiency of Gansu elm leaves decreased significantly that the relative water content decreased by 78.4%, 65.4%, and 47.3%, respectively. There was a gradual decrease in the net photosynthetic rate, stomatal conductance, and transpiration, by the values of 89.9%, 83.3%, and 79.9% which were lower than the corresponding rates before soil water loss. One of the main reasons for the decline in the photosynthetic rate was the change in stomatal conductance. Rehydration can alleviate the adverse effects caused by soil water loss in Gansu elm. Therefore, in the environment of continuous soil water loss, Gansu elm adapts to the decline of soil water content through a series of changes in morphology, physiology, and photosynthetic characteristics by showing strong drought tolerance. In the case of severe soil water loss after planting, rehydration can alleviate the damage to Gansu elm trees.

参考文献

[1] 韦小丽, 朱守谦, 徐锡增. 4个榆科树种水分参数随季节和年龄的变化规律[J]. 山地农业生物学报, 2005, 24(1): 17-21, 47.
[1] [Wei Xiaoli, Zhu Shouqian, Xu Xizeng. The change regularity of water parameters in four Ulmaceae trees species with season and age[J]. Journal of Mountain Agricultural and Biology, 2005, 24(1): 17-21, 47. ]
[2] 陈志成, 王志伟, 王荣荣, 等. 3种阔叶树种对持续干旱的生理响应及抗旱性评价[J]. 中国水土保持科学, 2013, 11(2): 65-71.
[2] [Chen Zhicheng, Wang Zhiwei, Wang Rongrong, et al. Physiological response of three broadleaved tree species to drought stress and evaluation of drought resistance[J]. Science of Soil and Water Conservation, 2013, 11(2): 65-71. ]
[3] 贺康宁, 张光灿, 田阳, 等. 黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境[J]. 林业科学, 2003, 49(1): 10-16.
[3] [He Kangning, Zhang Guangcan, Tian Yang, et al. The suitable soil moisture condition for forest growth in catchment afforestation in semi-arid region on Loess Plateau[J]. Scientia Silvae Sinicae, 2003, 49(1): 10-16. ]
[4] 李晓欣, 常金宝, 柴楠. 对4种榆属植物嫩枝扦插生根的初步研究[J]. 现代园艺, 2017, 40(20): 15-16.
[4] [Li Xiaoxin, Chang Jinbao, Chai Nan. Preliminary study on softwood cutting rooting of 4 species of Ulmus[J]. Xiandai Yuanyi Xiandai Horticulture, 2017, 40(20): 15-16. ]
[5] 倪媛, 刘涛, 倪伟, 等. 内蒙古乌拉特高原旱榆人工育苗试验[J]. 内蒙古林业, 2014, 59(5): 27.
[5] [Ni Yuan, Liu Tao, Ni Wei, et al. Experimental study on artificial seedling breeding of Ulmus pumila in Ulat Plateau of Inner Mongolia[J]. Inner Mongolia Forestry, 2014, 59(5): 27. ]
[6] 李红丽, 董智, 王林, 等. 浑善达克沙地榆树根系分布特征及生物量研究[J]. 干旱区资源与环境, 2002, 16(4): 99-105.
[6] [Li Hongli, Dong Zhi, Wang Lin, et al. Study on the root distribution characteristic and biomass of Ulmus pumila in Hunshandake sands[J]. Journal of Arid Land Resources and Environment, 2002, 16(4): 99-105. ]
[7] 张志永, 杨晓晖, 张晓, 等. 浑善达克沙地榆树(Ulmus pumila)种群结构和动态特征[J]. 中国沙漠, 2018, 38(3): 524-534.
[7] [Zhang Zhiyong, Yang Xiaohui, Zhang Xiao, et al. Structure and dynamic characteristics of Ulmus pumila population in the Otindag sandy land[J]. Journal of Desert Research, 2018, 38(3): 524-534. ]
[8] 夏尚光, 张金池, 梁淑英. 水分胁迫下3种榆树幼苗生理变化与抗旱性的关系[J]. 南京林业大学学报(自然科学版), 2008, 51(3): 131-134.
[8] [Xia Shangguang, Zhang Jinchi, Liang Shuying. Relationship between drought resistance and physiological change of three elm trees seedling under water stress[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2008, 51(3): 131-134. ]
[9] 王凯, 赵成姣, 林婷婷, 等. 水分处理对榆树幼苗不同器官非结构性碳水化合物的影响[J]. 干旱区研究, 2019, 36(1): 113-121.
[9] [Wang Kai, Zhao Chengjiao, Lin Tingting, et al. Effects of different water treatments on non-structural carbohydrates in different organs of Ulmus pumila seedlings in the Horqin sandy land[J]. Arid Zone Research, 2019, 36(1): 113-121. ]
[10] 刘洋, 王娟, 白婷玉, 等. 4种园林植物幼苗对干旱胁迫的生长和生理响应[J]. 干旱区资源与环境, 2021, 35(4): 173-179.
[10] [Liu Yang, Wang Juan, Bai Tingyu, et al. Growth and physiological response of seedlings of four garden plants to drought stress[J]. Journal of Arid Land Resources and Environment, 2021, 35(4): 173-179. ]
[11] 井大炜, 邢尚军, 杜振宇, 等. 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J]. 应用生态学报, 2013, 24(7): 1809-1816.
[11] [Jing Dawei, Xing Shangjun, Du Zhenyu, et al. Effects of drought stress on growth, photosynthetic characteristics, and active oxygen metabolism of poplar seedlings[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1809-1816. ]
[12] 贺少轩, 梁宗锁, 蔚丽珍, 等. 土壤干旱对2个种源野生酸枣幼苗生长和生理特性的影响[J]. 西北植物学报, 2009, 29(7): 1387-1393.
[12] [He Shaoxuan, Liang Zongsuo, Wei Lizhen, et al. Growth and physiological characteristics of wild sour jujube seedlings from two provenances under soil water stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(7): 1387-1393. ]
[13] 王强, 陈存根, 钱红格, 等. 水分胁迫对6种苗木光合生理特性的影响[J]. 水土保持通报, 2009, 29(2): 144-149.
[13] [Wang Qiang, Chen Cungen, Qian Hongge, et al. Effects of water stress on photosynthetic characteristics of six sorts of seedlings[J]. Bulletin of Soil and Water Conservation, 2009, 29(2): 144-149. ]
[14] 邬佳宝, 马明科, 张刚, 等. 文冠果对干旱胁迫的光合生理响应[J]. 干旱地区农业研究, 2014, 32(5): 55-60.
[14] [Wu Jiabao, Ma Mingke, Zhang Gang, et al. Photosynthetic physiological responses of Xanthocorpa sorbifolia under drought stress[J]. Agricultural Research in the Arid Areas, 2014, 32(5): 55-60. ]
[15] 王萍, 张希吏, 石磊. 干旱胁迫下沙芥幼苗叶片光合特性和叶绿素荧光参数的变化[J]. 干旱地区农业研究, 2017, 35(3): 159-163.
[15] [Wang Ping, Zhang Xili, Shi Lei. Changes of photosynthetic pharacteristics and chlorophyll fluorescence parameters of Pugionium cornutum(L.) Gaertn seedlings leaf under drought stress[J]. Agricultural Research in the Arid Areas, 2017, 35(3): 159-163. ]
[16] 安玉艳, 梁宗锁. 植物应对干旱胁迫的阶段性策略[J]. 应用生态学报, 2012, 23(10): 2907-2915.
[16] [An Yuyan, Liang Zongsuo. Staged strategy of plants in response to drought stress[J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2907-2915. ]
[17] 陶彦彤, 马娟, 张颖娟. 西鄂尔多斯珍稀植物绵刺的避旱相关基因研究[J]. 内蒙古师范大学学报(自然科学版), 2021, 50(3): 226-233.
[17] [Tao Yantong, Ma Juan, Zhang Yingjuan. Study on drought avoidance associated genes in rare plant Potaninia monfolica in western ordos[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 201, 50(3): 226-233. ]
[18] 陈海涛, 房川, 冀晓娜, 等. TDR300在测量土壤水分中的应用[J]. 生命科学仪器, 2007, 5(10): 51-52.
[18] [Chen Haitao, Fang Chuan, Ji Xiaona, et al. Application of TDR300 measuring soil moisture[J]. Life Science Instruments, 2007, 5(10): 51-52. ]
[19] 尹丽, 胡庭兴, 刘永安, 等. 干旱胁迫对不同施氮水平麻疯树幼苗光合特性及生长的影响[J]. 应用生态学报, 2010, 21(3): 569-576.
[19] [Yin Li, Hu Tingxing, Liu Yongan, et al. Effect of drought dtress on photosynthetic characteristics and growth of Jatropha curcas seedlings under different nitrogen levels[J]. Chinese Journal of Applied Ecology, 2010, 21(3): 569-576. ]
[20] 张志良. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2002: 3-4.
[20] [Zhang Zhiliang. Plant Physiology Experimental Guidance[M]. Beijing: Higher Education Press, 2002: 3-4. ]
[21] 李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 96-134.
[21] [Li Hesheng, Sun Qun, Zhao Shijie, et al. Plant Physiological and Biochemical Principles and Experimental Techniques[M]. Beijing: Higher Education Press, 2000: 96-134. ]
[22] Fischer R A, Turner N C. Plant productivity in the arid and semiarid zones[J]. Annual Review of Plant Physiology, 1978, 29(6): 178, doi: 10.1146/annurev.pp.29.060178.001425.
[23] 李强, 曹建华, 余龙江, 等. 干旱胁迫过程中外源钙对忍冬光合生理的影响[J]. 生态环境学报, 2010, 19(10): 2291-2296.
[23] [Li Qiang, Cao Jianhua, Yu Longjiang, et al. Effect of exogenous calcium on the photosynthetic characteristics of Lonicera japonica Thunb under drought stress[J]. Ecology and Environmental Sciences, 2010, 19(10): 2291-2296. ]
[24] 杨斌, 彭长辉, 张贤, 等. 干旱胁迫对刺槐幼苗叶片氮含量、光合速率及非结构性碳水化合物的影响[J]. 应用与环境生物学报, 2019, 25(6): 1261-1269.
[24] [Yang Bin, Peng Changhui, Zhang Xian, et al. Effects of drought stress on leaf nitrogen content, rate of photosynthesis, and non-structural carbohydrates in Robinia pseudoacacia L. seedlings[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(6): 1261-1269. ]
[25] 吴金山, 张景欢, 李瑞杰, 等. 植物对干旱胁迫的生理机制及适应性研究进展[J]. 山西农业大学学报(自然科学版), 2017, 37(6): 452-456.
[25] [Wu Jinshan, Zhang Jinghuan, Li Ruijie, et al. The plant’s physiological mechanism and adaptability to drought stress[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2017, 37(6): 452-456. ]
[26] 桑子阳, 马履一, 陈发菊. 干旱胁迫对红花玉兰幼苗生长和生理特性的影响[J]. 西北植物学报, 2011, 31(1): 109-115.
[26] [Sang Ziyang, Ma Lvyi, Chen Faju. Growth and physiological characteristics of Magnolia wufengensis seedlings under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(1): 109-115. ]
[27] 王晶英, 赵雨森, 王臻, 等. 干旱胁迫对银中杨生理生化特性的影响[J]. 水土保持学报, 2006, 20(1): 197-200.
[27] [Wang Jingying, Zhao Yusen, Wang Zhen, et al. Effect of drought stress on physiologic and biochemical characteristic of Populus alba × Populus berolinensis[J]. Journal of Soil and Water Conservation, 2006, 20(1): 197-200. ]
[28] 韩刚, 赵忠. 不同土壤水分下4种沙生灌木的光合光响应特性[J]. 生态学报, 2010, 30(15): 4019-4026.
[28] [Han Gang, Zhao Zhong. Light response characteristics of photosynthesis of four xerophilous shrubs under different soil moistures[J]. Acta Ecologica Sinica, 2010, 30(15): 4019-4026. ]
[29] 周宇飞, 王德权, 陆樟镳, 等. 干旱胁迫对持绿性高粱光合特性和内源激素ABA、CTK含量的影响[J]. 中国农业科学, 2014, 47(4): 655-663.
[29] [Zhou Yufei, Wang Dequan, Lu Zhangbing, et al. Effects of drought stress on photosynthetic characteristics and endogenous hormone ABA and CTK contents in green-stayed Sorghum[J]. Scientia Agricultura Sinica, 2014, 47(4): 655-663. ]
[30] 付士磊, 周永斌, 何兴元, 等. 干旱胁迫对杨树光合生理指标的影响[J]. 应用生态学报, 2006, 17(11): 2016-2019.
[30] [Fu Shilei, Zhou Yongbin, He Xingyuan, et al. Effects of drought stress on photosynthesis physiology of Populus pseudo-simonii[J]. Chinese Journal of Applied Ecology, 2006, 17(11): 2016-2019. ]
[31] 张燕红, 吴永波, 刘璇, 等. 高温和干旱胁迫对杨树幼苗光合性能和抗氧化酶系统的影响[J]. 东北林业大学学报, 2017, 45(11): 32-38.
[31] [Zhang Yanhong, Wu Yongbo, Liu Xuan, et al. Effects of elevated temperature and drought on photosynthetic characteristics and antioxidant enzyme system of Poplar seedlings[J]. Journal of Northeast Forestry University, 2017, 45(11): 32-38. ]
文章导航

/