气候变化背景下中亚干旱区大气水分循环要素时空演变
收稿日期: 2022-02-17
修回日期: 2022-04-18
网络出版日期: 2022-10-25
基金资助
国家自然科学基金(41875102);国家自然科学基金(U1903113);四川省科技厅项目(2020JDJQ0050);中央级公益性科研院所基本科研业务费专项资金项目(IDM2021006)
Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change
Received date: 2022-02-17
Revised date: 2022-04-18
Online published: 2022-10-25
基于再分析资料,系统分析了1979—2018年中亚干旱区大气水汽含量、水汽收支、降水量、实际蒸发量等水分循环要素的时空变化特征。结果表明:(1) 中亚水分循环要素空间差异明显,降水量和实际蒸发量在天山和帕米尔等山区及周边绿洲区为高值区,荒漠平原地区为低值区,而大气水汽含量相反。(2) 1979—2018年中亚水汽含量呈微弱的减少趋势,变化速率区域差异明显,咸海周边区域明显减少,而新疆大部和天山山区明显增加;中亚地区水汽输送以纬向输送为主,经向输送相对较弱,不同区域水汽收支和变化有较大差异,其中西边界和北边界水汽输送减少,东边界和南边界水汽输送增加;水汽收支在中亚西北部、中亚南部、帕米尔高原和天山山区呈增加趋势,而中亚北部和新疆大部有减少趋势。(3) 与水汽输送变化的表现不同,1979—2018年中亚降水量有增加趋势,为4.14 mm·(10a)-1,且年际波动较大,显著增加趋势分布在中亚北部、新疆大部和天山山区,而在中亚西北部和南部有明显减少趋势。(4) 中亚实际蒸发量有微弱的增加趋势,在中亚北部、天山山区和帕米尔高原有明显增加,而在里咸海、中亚南部和新疆南部干旱地区明显减少。从季节来看,各水分循环要素季节变化与年变化时空分布特征基本一致。研究成果有助于进一步了解中亚干旱区大气水分循环演变及机理。
高洁,赵勇,姚俊强,迪丽努尔·托列吾别克,王梦园 . 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022 , 39(5) : 1371 -1384 . DOI: 10.13866/j.azr.2022.05.04
The arid regions of Central Asia, which are “upstream” of China in terms of their influence on weather and climate, are characterized by a general shortage of water resources and the fragility of ecosystems. The atmospheric water cycle is the key link in the transformation of water resources and ecosystems in this region. In this study, we reassessed the temporal and spatial variation of water cycle elements, such as atmospheric water vapor content, water vapor budget, precipitation, and actual evaporation, in the arid region and subregions of Central Asia, from 1979 to 2018. The results of our analysis show clear spatial differences in the water cycle elements of Central Asia. Precipitation and actual evaporation are high in mountainous areas, such as Tianshan Mountains and Pamir and surrounding oasis areas, and low in the desert plain areas, whereas atmospheric water vapor content shows an opposite pattern. In terms of temporal changes, from 1979 to 2018, the water vapor content in Central Asia showed a weak decreasing trend, with obvious regional differences in the rate of change. Water vapor content in the surrounding areas of the Aral Sea decreased significantly, whereas in most of the areas of the Xinjiang and Tianshan Mountains, it increased significantly. Zonal transport is the main mode of water vapor transport in Central Asia, compared with the relatively weak meridional transport. Large differences were found in the water vapor budget over different regions; the water vapor transport tended to decrease in the western and northern boundaries and increased in the eastern and southern boundaries. Water vapor revenue and expenditure showed an increasing trend in northwestern Central Asia, southern Central Asia, the Pamir Plateau, and the Tianshan Mountains and a decreasing trend in northern Central Asia and most of Xinjiang. In contrast to the change in water vapor transport, the precipitation in Central Asia increased from 1979 to 2018, with an increase of 4.14 mm·(10a)-1 and a large interannual fluctuation. The significant increasing trend of precipitation is distributed in northern Central Asia and most of the Xinjiang and Tianshan Mountains, whereas there was a significant decreasing trend in northwestern and southern Central Asia. The actual evaporation in Central Asia showed a slight increasing trend, increasing significantly in the northern part of Central Asia, the Tianshan Mountains, and Pamir but decreasing significantly in the Caspian Sea area, Aral Sea, southern Central Asia, and southern Xinjiang. In terms of seasonal variation, the temporal and spatial distribution of seasonal and annual variations of water cycle elements was generally consistent. The results of our analysis contribute to a better understanding of the evolution and mechanism of the atmospheric water cycle in the arid regions of Central Asia.
[1] | 姚俊强, 曾勇, 李建刚, 等. 中亚区域干湿及极端降水研究综述[J]. 气象科技展, 2020, 10(4): 7-14. |
[1] | [Yao Junqiang, Zeng Yong, Li Jiangang, et al. A review of dry-wet climate change and extreme precipitation in Central Asia[J]. Advances in Meteorological Science and Technology, 2020, 10(4): 7-14. ] |
[2] | 郭利丹, 周海炜, 夏自强, 等. 丝绸之路经济带建设中的水资源安全问题及对策[J]. 中国人口·资源与环境, 2015, 25(5): 114-121. |
[2] | [Guo Lidan, Zhou Haiwei, Xia Ziqiang, et al. Water resources security and its countermeasure suggestions in Building Silk Road Economic Belt[J]. China Population, Resources and Environment, 2015, 25(5): 114-121. ] |
[3] | 姚海娇, 周宏飞, 苏风春. 从水土资源匹配关系看中亚地区水问题[J]. 干旱区研究, 2013, 30(3): 391-395. |
[3] | [Yao Haijiao, Zhou Hongfei, Su Fengchun. Water problems based on spatial matching patterns of water and land resources in Central Asia[J]. Arid Zone Research, 2013, 30(3): 391-395. ] |
[4] | 胡汝骥, 姜逢清, 王亚俊, 等. 中亚(五国)干旱生态地理环境特征[J]. 干旱区研究, 2014, 31(1): 1-12. |
[4] | [Hu Ruji, Jiang Fengqing, Wang Yajun, et al. Arid ecological and geographical conditions in five countries of Central Asia[J]. Arid Zone Research, 2014, 31(1): 1-12. ] |
[5] | 宫德吉. 雨强、径流和有效水资源[J]. 内蒙古气象, 2001, 1(4): 28. |
[5] | [Gong Deji. Rain intensity, runoff and effective water resources[J]. Meteorology Journal of Inner Mongolia, 2001(4): 28. ] |
[6] | 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法[M]. 北京: 气象出版社, 2007: 320-322. |
[6] | [Zhu Qiangen, Lin Jinrui, Shou Shaowen, et al. Principles and Methods of Meteorology[M]. Beijing: China Meteorological Press, 2007: 320-322. ] |
[7] | 汤懋苍, 江灏, 柳艳香, 等. 全球各类旱区的成因分析[J]. 中国沙漠, 2002, 22(1): 1-5. |
[7] | [Tang Maocang, Jiang Hao, Liu Yanxiang, et al. Cause analysis of arid region formation on the world[J]. Journal of Desert Research, 2002, 22(1): 1-5. ] |
[8] | Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354. |
[9] | Lian X, Piao S, Chen A, et al. Multifaceted characteristics of dryland aridity changes in a warming world[J]. Nature Reviews Earth & Environment, 2021, 2(4): 232-250. |
[10] | 闫昕旸, 张强, 张文波, 等. 泛中亚干旱区气候变化特征分析[J]. 干旱区研究, 2021, 38(1): 1-11. |
[10] | [Yan Xinyang, Zhang Qiang, Zhang Wenbo, et al. Analysis of climate characteristics in the Pan-Central-Asia arid region[J]. Arid Zone Research, 2021, 38(1): 1-11. ] |
[11] | Hu Z, Chen X, Chen D, et al. “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia[J]. International Journal of Climatology, 2019, 39(2): 1072-1091. |
[12] | 陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26. |
[12] | [Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26. ] |
[13] | Zou S, Jilili A, Ding J L, et al. Description and attribution analysis of the 2017 spring anomalous high temperature causing floods in Kazakhstan[J]. Journal of the Meteorological Society of Japan, 2020, 98(6): 1353-1368. |
[14] | Zou S, Duan W L, Nikolaos C, et al. An extreme rainfall event in summer 2018 of Hami city in eastern Xinjiang, China[J]. Advances in Climate Change Research, 2021, 12(6): 795-803. |
[15] | 姚俊强, 杨青, 毛炜峄, 等. 气候变化和人类活动对中亚地区水文环境的影响评估[J]. 冰川冻土, 2016, 38(1): 222-230. |
[15] | [Yao Junqiang, Yang Qing, Mao Weiyi, et al. Evaluation of the impacts of climate change and human activities on the hydrological environment in Central Asia[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 222-230. ] |
[16] | Narisma G T, Foley J A, Licker R, et al. Abrupt changes in rainfall during the twentieth century[J]. Geophysical Research Letters, 2007, 34(6): 710-714. |
[17] | Guo Y, Wang C. Trends in precipitation recycling over the Qinghai-Xizang Plateau in last decades[J]. Journal of Hydrology, 2014, 517: 826-835. |
[18] | 罗勇, 姜彤, 夏军, 等. 中国陆地水循环演变与成因[M]. 北京: 科学出版社, 2017: 18-19. |
[18] | [Luo Yong, Jiang Tong, Xia Jun, et al. Evolution and Causes of Land Water Cycle in China[M]. Beijing: Science Press, 2017: 18-19. ] |
[19] | Eltahir E, Bras R L. Precipitation recycling[J]. Reviews of Geophysics, 1996, 34(3): 367-378. |
[20] | 关学锋. 中亚及中国干旱区水汽分布、输送特征及其影响[D]. 北京: 中国科学院研究生院, 2015. |
[20] | [Guan Xuefeng. Spatial and Temporal Distribution and Transport Characteristics of Water Vapor and Its Effects Over Central Asia and the Arid Region of China[D]. Beijing: University of Chinese Academy of Sciences, 2015. ] |
[21] | 徐栋, 李若麟, 王澄海. 全球变暖背景下亚非典型干旱区降水变化及其与水汽输送的关系研究[J]. 气候与环境研究, 2016, 21(6): 737-748. |
[21] | [Xu Dong, Li Ruolin, Wang Chenghai. Characteristics of precipitation changes and relationships with water vapor transport in typical arid regions of Asia and Africa under global warming[J]. Climatic and Environmental Research, 2016, 21(6): 737-748. ] |
[22] | Yao J Q, Chen Y N, Yang Q. Spatial and temporal variability of water vapor pressure in the arid region of northwest China, during 1961-2011[J]. Theoretical & Applied Climatology, 2016, 123(3): 683-691. |
[23] | Jiang J, Zhou T, Zhang W. Evaluation of satellite and reanalysis precipitable water vapor data sets against radiosonde observations in Central Asia[J]. Earth and Space Science, 2019, 6(7): 1129-1148. |
[24] | Dilinuer T, Yao J Q, Chen J. Systematical evaluation of three gridded daily precipitation products against rain gauge observations over Central Asia[J]. Frontiers in Earth Science, 2021, 9: 2296-6463. |
[25] | Hu Z Y, Zhou Q M, Chen X, et al. Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations[J]. International Journal of Climatology, 2018, 38(9): 3475-3493. |
[26] | Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553-597. |
[27] | 石晓兰, 杨青, 姚俊强, 等. 基于 ERA-Interim资料的中国天山山区云水含量空间分布特征[J]. 沙漠与绿洲气象, 2016, 10(2): 50-56. |
[27] | [Shi Xiaolan, Yang Qing, Yao Junqiang, et al. The spatial distribution of water vapor and cloud water content over Tianshan mountains, China based on ERA-Interim dataset[J]. Desert and Oasis Meteorology, 2016, 10(2): 50-56. ] |
[28] | 林厚博, 游庆龙, 焦洋, 等. 青藏高原及附近水汽输送对其夏季降水影响的分析[J]. 高原气象, 2016, 35(2): 309-317. |
[28] | [Lin Houbo, You Qinglong, Jiao Yang, et al. Water vapor transportation and its influences on precipitation in summer over Qinghai-Xizang Plateau and its surroundings[J]. Plateau Meteorology, 2016, 35(2): 309-317. ] |
[29] | 周杰, 吴永萍, 封国林, 等. ERA-Interim中的中国地区水分循环要素的时空演变特征分析[J]. 物理学报, 2013, 62(19): 199-202. |
[29] | [Zhou Jie, Wu Yongping, Feng Guolin, et al. Spatial and temporal characteristics of moisture cycle factors over China analyzed with ERA-Interim reanalysis data[J]. Acta Physica Sinica, 2013, 62(19): 199-202. ] |
[30] | Chen D L, Chen Hans W T. Using the Köppen classification to quantify climate variation and change: An example for 1901-2010[J]. Environmental Development, 2013, 6(1): 69-79. |
[31] | 范雪薇, 刘海隆, 赵文宇, 等. 基于NCEP资料新疆降水转化率的研究[J]. 石河子大学学报(自然科学版), 2016, 34(3): 372-378. |
[31] | [Fan Xuewei, Liu Hailong, Zhao Wenyu, et al. Analysis of precipitation conversion in Xinjiang based on NCEP data[J]. Journal of Shihezi University (Natural Science Edition), 2016, 34(3): 372-378. ] |
[32] | Chen F H, Chen J H, Holmes J, et al. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region[J]. Quaternary Science Reviews, 2010, 29(7-8): 1055-1068. |
[33] | Peng D D, Zhou T J, Zhang L X. Moisture sources associated with precipitation during dry and wet seasons over Central Asia[J]. Journal of Climate, 2020, 33(24): 10755-10771. |
[34] | Xing W, Wang B. Predictability and prediction of summer rainfall in the arid and semiarid regions of China[J]. Climate Dynamics, 2017, 49(1-2): 419-431. |
[35] | 白庆梅. 亚洲干旱/半干旱区近几十年区域气候变化[D]. 兰州: 兰州大学, 2010. |
[35] | [Bai Qingmei. Region Change of Asian Arid and Semiarid Area in Recent Years[D]. Lanzhou: Lanzhou University, 2010. ] |
[36] | Yao J Q, Mao W Y, Yang Q, et al. Annual actual evapotranspiration in inland river catchments of China based on the Budyko framework[J]. Stochastic Environmental Research and Risk Assessment, 2017, 31(6): 1409-1421. |
[37] | Jiang L L, Jiapaper G, Bao A M, et al. Vegetation dynamics and responses to climate change and human activities in Central Asia[J]. Science of the Total Environment, 2017, 599-600: 967-980. |
[38] | 杨胜天, 于心怡, 丁建丽, 等. 中亚地区水问题研究综述[J]. 地理学报, 2017, 72(1): 79-93. |
[38] | [Yang Shengtian, Yu Xinyi, Ding Jianli, et al. A review of water issues research in Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 79-93. ] |
[39] | 赵勇, 杨青, 黄安宁, 等. 青藏和伊朗高原热力异常与北疆夏季降水的关系[J]. 气象学报, 2013, 71(4): 660-667. |
[39] | [Zhao Yong, Yang Qing, Huang Anning, et al. Relationships between the anomalies of surface sensible heat in the Tibetan Plateau and Iran Plateau and summertime precipitation in North Xinjiang[J]. Acta Meteorologic Sinica, 2013, 71(4): 660-667. ] |
[40] | 赵勇, 李如琦, 杨霞, 等. 5月青藏高原地区感热异常对北疆夏季降水的影响[J]. 高原气象, 2013, 32(5): 1215-1223. |
[40] | [Zhao Yong, Li Ruqi, Yang Xia, et al. Impact of the anomaly of surface sensible heat in Qinghai-Xizang Plateaual and its surrounding areas on summertime precipitation in northern Xingjiang[J]. Plateau Meteorology, 2013, 32(5): 1215-1223. ] |
[41] | 卢星, 赵勇, 王天竺. 新疆夏季降水的环流差异分析[J]. 沙漠与绿洲气象, 2021, 15(1): 84-90. |
[41] | [Lu Xing, Zhao Yong, Wang Tianzhu. Analysis on the circulation differences of summer rainfall over Xinjiang[J]. Desert and Oasis Meteorology, 2021, 15(1): 84-90. ] |
/
〈 | 〉 |