干旱区研究 ›› 2023, Vol. 40 ›› Issue (10): 1595-1607.doi: 10.13866/j.azr.2023.10.06 cstr: 32277.14.j.azr.2023.10.06

• 水土资源 • 上一篇    下一篇

托木尔峰青冰滩72号冰川表碛区夏季消融模拟研究

何捷1,2(),王璞玉1,2,3(),李宏亮1,2,李忠勤1,2,3,周平1,牟建新1,余凤臣3,戴玉萍3   

  1. 1.中国科学院西北生态环境资源研究院, 冰冻圈科学国家重点实验室, 甘肃 兰州 730000
    2.中国科学院大学, 北京 100049
    3.石河子大学理学院, 新疆 石河子 832000
  • 收稿日期:2023-02-20 修回日期:2023-04-28 出版日期:2023-10-15 发布日期:2023-11-01
  • 作者简介:何捷(1999-), 男, 硕士研究生, 主要从事山地冰川模拟研究. E-mail: hejie@nieer.ac.cn
  • 基金资助:
    第三次新疆综合科学考察项目(2022xjkk0101);国家自然科学基金项目(42371148);中国科学院青年创新促进会项目(Y2021110)

Simulation study of summer ablation in the debris area of Qingbingtan Glacier No. 72 in Mt. Tomor

HE Jie1,2(),WANG Puyu1,2,3(),LI Hongliang1,2,LI Zhongqin1,2,3,ZHOU Ping1,MU Jianxin1,YU Fengchen3,DAI Yuping3   

  1. 1. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    2. University of the Chinese Academy of Sciences, Beijing 100049, China
    3. College of Science, Shihezi University, Shihezi 832000, Xinjiang, China
  • Received:2023-02-20 Revised:2023-04-28 Published:2023-10-15 Online:2023-11-01

摘要:

表碛覆盖型冰川在我国西部分布广泛,由于该类型冰川消融区域不同程度的被岩石碎屑所覆盖,消融状况与非表碛覆盖型冰川有较大差异,因此,开展表碛覆盖型冰川的消融模拟研究至关重要。本文以冰面气象数据为驱动,使用表碛覆盖型冰川能量平衡模型对天山托木尔峰青冰滩72号冰川表碛区进行能量和消融模拟。基于热传导过程和能量平衡方程,模型计算了表碛表面温度以及表碛层内部温度,并通过表碛内部温度估算下覆冰的消融量。结果表明: 2008年夏季期间模型模拟的消融量为0.39 m w.e.,与消融花杆数据进行验证取得了较高的模拟精度(R2=0.92, RMSE=±0.03 m w.e.),表碛表面温度和内部10 cm深处温度的模拟值也与实测数据拟合较好(R2分别为0.91和0.60)。在表碛区的能量交换过程中,净短波辐射是唯一的能量收入项,感热通量是最大的能量支出项(49.7%),其次分别为传导热通量(消融耗热)(25.8%),净长波辐射(19.8%)和潜热通量(4.6%),降水热量不足1%。云量对表碛区的气象和能量特征有着显著的影响,阴天条件下表碛区的入射短波辐射峰值从晴天的854 W·m-2降至587 W·m-2,下行长波辐射和相对湿度增加,平均消融量比晴天减少了12%。此外,对表碛关键参数的敏感性分析表明,模拟的消融量对导热系数的变化最为敏感,反照率和表面粗糙度的变化量同样不可忽视。

关键词: 青冰滩72号冰川, 天山托木尔峰, 表碛, 能量平衡, 消融模拟

Abstract:

Debris-covered glaciers are widely distributed in Western China. Their ablation areas are covered by varying degrees of rock debris, and consequently, their melting statuses differ greatly when compared to debris-free glaciers. There is currently a need for melting simulations to better understand debris-covered glaciers. In this paper, driven by field meteorological data, an energy balance model for debris-covered glaciers has been used to simulate the energy and ablation in debris-covered areas of Qingbingtan Glacier No. 72 in Mt. Tomor, Tianshan. Based on the heat conduction process and the energy balance equation, the model calculates the debris surface temperature and the internal temperature of the debris, then estimates the subdebris melt using the internal debris temperature. The results showed that the modeled ablation was 0.39 m w.e. in the summer of 2008, and the simulation accuracy (R2 = 0.92, RMSE = ±0.03 m w.e.) was higher when compared with the field data. The simulated debris temperatures at the surface and a depth of 10 cm inside the debris were also found to fit well with the measured data (R2 = 0.91 and 0.60, respectively). During energy exchange in the debris area, net shortwave radiation was the only energy income item, and sensible heat flux was the largest energy expenditure item (49.7%), followed by the heat conduction flux (ablation heat consumption) (25.8%), net longwave radiation (19.8%), and latent heat flux (4.6%), while precipitation heat was <1%. Cloud cover had a significant impact on the meteorological and energy characteristics of the debris area. Under overcast conditions, the incoming shortwave radiation in the debris area decreased from 854 W·m-2 on sunny days to 587 W·m-2, while the downward longwave radiation and relative humidity increased, and the average ablation decreased by 12%, when compared with sunny days. In addition, the sensitivity analysis of the key parameters for debris shows that the simulated ablation is most sensitive to the changes in thermal conductivity, and the changes in albedo and surface roughness cannot be ignored.

Key words: Qingbingtan Glacier No. 72, Mt. Tomor in Tianshan, debris, energy balance, melting simulation