干旱区研究 ›› 2024, Vol. 41 ›› Issue (12): 2015-2026.doi: 10.13866/j.azr.2024.12.04 cstr: 32277.14.AZR.20241204
李嘉楠1(), 周成乾2, 胡广录2,3(), 杨鹏华2, 李昊辰2
收稿日期:
2024-04-02
修回日期:
2024-08-26
出版日期:
2024-12-15
发布日期:
2024-12-20
通讯作者:
胡广录. E-mail: hgl0814@163.com作者简介:
李嘉楠(1975-),男,高级工程师,研究方向为水土保持生态修复. E-mail: 13919119754@163.com
基金资助:
LI Jianan1(), ZHOU Chengqian2, HU Guanglu2,3(), YANG Penghua2, LI Haochen2
Received:
2024-04-02
Revised:
2024-08-26
Published:
2024-12-15
Online:
2024-12-20
摘要:
土壤大孔隙是土壤水分入渗的主要通道,探究荒漠-绿洲过渡带典型固沙植物根区土壤大孔隙特征及其影响要素,对于区域生态植被恢复和固沙植物的选择具有重要借鉴意义。通过水分穿透实验,研究了黑河中游荒漠-绿洲过渡带典型固沙植物根区土壤大孔隙特征,分析了土壤大孔隙的影响因素以及大孔隙对土壤饱和导水率的影响。结果表明:(1) 土壤大孔隙半径范围在0.5~1.6 mm,大于最小通气孔隙半径0.3 mm,土壤水分运动主要以重力水为驱动力,过渡带固沙植物根区土壤大孔隙呈现出随土层深度增加而减小的趋势,整体表现为小半径孔隙多,大半径孔隙少的特点。(2) 土壤容重与除大孔隙总数量外的其他土壤大孔隙特征指标均呈极显著负相关关系;饱和含水率与除土壤大孔隙总数量外的其他大孔隙特征指标均呈显著正相关关系;有机质含量与各土壤大孔隙特征指标均呈极显著正相关关系。(3) 土壤饱和导水率在2.32~3.79 mm·min-1,且土壤大孔隙体积比、大孔隙面积比、大孔隙平均半径的4次方和大孔隙总数量分别决定了饱和导水率82%、68%、79%和43%的变异。(4) 在研究区相同生境条件下,与裸地相比,固沙植物的栽植能够显著提升土壤水分的渗透能力,固沙植物根区土壤水分渗透能力从强到弱为梭梭、沙拐枣、泡泡刺。
李嘉楠, 周成乾, 胡广录, 杨鹏华, 李昊辰. 荒漠-绿洲过渡带典型固沙植物根区土壤大孔隙特征及影响因素[J]. 干旱区研究, 2024, 41(12): 2015-2026.
LI Jianan, ZHOU Chengqian, HU Guanglu, YANG Penghua, LI Haochen. Characteristics and influencing factors of soil macropores in the root zone of sand-fixing plants in the desert-oasis transition zone[J]. Arid Zone Research, 2024, 41(12): 2015-2026.
表1
固沙植物基本信息"
固沙植物种类 | 编号 | 冠幅/m | 株高/m | 造林时间 | 立地条件(固定沙丘) | 采样时间 |
---|---|---|---|---|---|---|
梭梭(人工) | SS1 | 2.47±0.23 | 2.74±0.17 | 1990—1992年 | 丘间低地 | 6月 |
SS2 | 2.63±0.35 | 2.53±0.21 | 1990—1992年 | 丘间低地 | 7月 | |
SS3 | 2.53±0.33 | 2.87±0.13 | 1990—1992年 | 背风坡 | 8月 | |
沙拐枣(人工) | SG1 | 2.42±0.22 | 1.85±0.10 | 1990—1992年 | 丘间低地 | 6月 |
SG2 | 2.93±0.25 | 2.11±0.15 | 1990—1992年 | 丘间低地 | 7月 | |
SG3 | 2.63±0.18 | 1.96±0.09 | 1990—1992年 | 背风坡 | 8月 | |
泡泡刺(天然) | PP1 | 3.88±0.29 | 0.45±0.02 | - | 丘间低地 | 6月 |
PP2 | 4.16±0.22 | 0.51±0.01 | - | 丘间低地 | 7月 | |
PP3 | 3.95±0.26 | 0.48±0.02 | - | 背风坡 | 8月 | |
裸地 | CK | - | - | - | 丘间低地 | 6—8月 |
表2
不同固沙植物根区土壤大孔隙半径及数量"
固沙植物类型 | 土层深 度/cm | 大孔隙半径范围及数量 | 大孔隙总数量 /(104个·m-2) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
半径范 围/mm | 数量 /(103个·m-2) | 半径范 围/mm | 数量 /(103个·m-2) | 半径范 围/mm | 数量 /(103个·m-2) | 半径范 围/mm | 数量 /(104个·m-2) | |||
梭梭 | 0~10 | 1.6~1.1 | 5.94 | 1.1~0.9 | 5.09 | 0.9~0.7 | 10.91 | 0.7~0.5 | 2.63 | 4.82 |
10~20 | 1.5~1.1 | 4.43 | 1.1~0.9 | 6.10 | 0.9~0.7 | 10.39 | 0.7~0.5 | 2.48 | 4.57 | |
20~30 | 1.4~1.1 | 4.32 | 1.1~0.9 | 4.72 | 0.9~0.7 | 9.52 | 0.7~0.5 | 2.41 | 4.27 | |
30~40 | 1.3~1.1 | 3.04 | 1.1~0.9 | 4.45 | 0.9~0.7 | 10.39 | 0.7~0.5 | 2.31 | 4.10 | |
40~50 | 1.3~1.1 | 2.82 | 1.1~0.9 | 4.09 | 0.9~0.7 | 8.51 | 0.7~0.5 | 2.23 | 3.77 | |
沙拐枣 | 0~10 | 1.5~1.1 | 3.65 | 1.1~0.9 | 4.49 | 0.9~0.7 | 11.51 | 0.7~0.5 | 2.53 | 4.49 |
10~20 | 1.4~1.1 | 4.34 | 1.1~0.9 | 4.85 | 0.9~0.7 | 10.06 | 0.7~0.5 | 2.54 | 4.47 | |
20~30 | 1.3~1.1 | 2.99 | 1.1~0.9 | 4.40 | 0.9~0.7 | 10.32 | 0.7~0.5 | 2.30 | 4.08 | |
30~40 | 1.2~1.1 | 2.74 | 1.1~0.9 | 7.25 | 0.9~0.7 | 9.67 | 0.7~0.5 | 2.20 | 4.17 | |
40~50 | 1.2~1.1 | 1.55 | 1.1~0.9 | 3.71 | 0.9~0.7 | 8.99 | 0.7~0.5 | 2.14 | 3.56 | |
泡泡刺 | 0~10 | 1.4~1.1 | 4.31 | 1.1~0.9 | 4.75 | 0.9~0.7 | 9.80 | 0.7~0.5 | 2.50 | 4.39 |
10~20 | 1.4~1.1 | 3.79 | 1.1~0.9 | 4.38 | 0.9~0.7 | 8.99 | 0.7~0.5 | 2.33 | 4.04 | |
20~30 | 1.3~1.1 | 2.33 | 1.1~0.9 | 4.03 | 0.9~0.7 | 9.70 | 0.7~0.5 | 2.26 | 3.86 | |
30~40 | 1.3~1.1 | 2.50 | 1.1~0.9 | 3.66 | 0.9~0.7 | 7.96 | 0.7~0.5 | 2.15 | 3.56 | |
40~50 | 1.2~1.1 | 1.44 | 1.1~0.9 | 3.46 | 0.9~0.7 | 7.00 | 0.7~0.5 | 2.00 | 3.19 | |
裸地 | 0~10 | 1.4~1.1 | 3.70 | 1.1~0.9 | 4.01 | 0.9~0.7 | 8.42 | 0.7~0.5 | 2.08 | 3.80 |
10~20 | 1.3~1.1 | 3.24 | 1.1~0.9 | 2.63 | 0.9~0.7 | 7.96 | 0.7~0.5 | 2.08 | 3.57 | |
20~30 | 1.2~1.1 | 3.38 | 1.1~0.9 | 2.66 | 0.9~0.7 | 7.77 | 0.7~0.5 | 2.08 | 3.46 | |
30~40 | 1.2~1.1 | 1.96 | 1.1~0.9 | 2.26 | 0.9~0.7 | 8.14 | 0.7~0.5 | 1.99 | 3.22 | |
40~50 | - | - | 1.1~0.9 | 3.89 | 0.9~0.7 | 7.44 | 0.7~0.5 | 1.86 | 2.99 |
表3
不同固沙植物根区土壤大孔隙特征指标"
固沙植物类型 | 土层深度/cm | 平均半径/mm | 大孔隙面积比/(m2·m-2) | 大孔隙体积比/(m3·m-3) | 饱和导水率/(mm·min-1) |
---|---|---|---|---|---|
梭梭 | 0~10 | 0.75±0.04Aa | 8.56±0.37Aa | 0.84±0.04Aa | 3.79±0.18Aa |
10~20 | 0.75±0.05Aa | 8.01±0.30Aa | 0.74±0.05Ba | 3.57±0.12Ba | |
20~30 | 0.71±0.05ABa | 6.78±0.81Ba | 0.66±0.02Cab | 3.29±0.04Ca | |
30~40 | 0.66±0.06ABa | 5.68±0.38Cab | 0.65±0.04Ca | 3.17±0.06Ca | |
40~50 | 0.62±0.06Ba | 4.57±0.18Da | 0.57±0.02Da | 2.86±0.12Da | |
沙拐枣 | 0~10 | 0.73±0.07Aa | 7.49±0.43Ab | 0.71±0.04Aab | 3.61±0.16Aa |
10~20 | 0.72±0.07Aa | 7.26±0.58Aa | 0.73±0.03Aa | 3.32±0.20Ba | |
20~30 | 0.65±0.01Aba | 5.38±0.07Bb | 0.59±0.06BCb | 3.15±0.05BCb | |
30~40 | 0.64±0.04ABa | 5.04±0.42Bb | 0.60±0.04Bab | 3.03±0.09CDab | |
40~50 | 0.60±0.02Ba | 4.11±0.30Cab | 0.50±0.03Cb | 2.80±0.11Da | |
泡泡刺 | 0~10 | 0.72±0.05Aa | 8.07±0.30Aab | 0.72±0.05Ab | 3.43±0.11Aab |
10~20 | 0.71±0.05Aa | 7.20±0.06Ba | 0.62±0.05Bb | 3.26±0.06ABa | |
20~30 | 0.63±0.03ABa | 5.03±0.41Db | 0.68±0.04ABa | 3.21±0.08Bab | |
30~40 | 0.63±0.07ABa | 5.95±0.39Ca | 0.53±0.02Cbc | 2.81±0.05Cbc | |
40~50 | 0.59±0.02Ba | 3.67±0.22Ebc | 0.45±0.03Cbc | 2.55±0.07Db | |
裸地 | 0~10 | 0.71±0.04Aa | 6.07±0.15Ac | 0.59±0.05Ab | 3.10±0.26Ab |
10~20 | 0.68±0.01ABa | 5.15±0.17Bb | 0.51±0.03Bc | 2.81±0.05ABb | |
20~30 | 0.63±0.03BCa | 4.27±0.31Cb | 0.44±0.01BCc | 2.78±0.07ABc | |
30~40 | 0.59±0.02Ca | 5.07±0.10Bb | 0.48±0.02Cc | 2.63±0.25BCc | |
40~50 | 0.58±0.01Ca | 3.19±0.34Dc | 0.39±0.03Dc | 2.32±0.04Cc |
表4
土壤大孔隙特征指标与土壤主要理化性质的相关性"
大孔隙特征指标 | 土壤容重/(g·cm-3) | 总孔隙度/% | 饱和含水率/% | 有机质/(g·kg-1) | 不同径级土壤颗粒(d) | ||
---|---|---|---|---|---|---|---|
d<0.25 mm | 0.25 mm<d<0.5 mm | d>0.5 mm | |||||
总数量 | -0.425 | 0.362 | 0.373 | 0.666** | -0.105 | 0.02 | 0.215 |
平均半径 | -0.840** | 0.654** | 0.709** | 0.790** | 0.059 | -0.131 | 0.083 |
面积比 | -0.729** | 0.596** | 0.632** | 0.807** | 0.004 | -0.084 | 0.133 |
体积比 | -0.616** | 0.444 | 0.485* | 0.891** | 0.061 | -0.08 | 0.03 |
[1] | 王蕙, 赵文智, 常学向. 黑河中游荒漠绿洲过渡带土壤水分与植被空间变异[J]. 生态学报, 2007, 27(5): 1731-1739. |
[Wang Hui, Zhao Wenzhi, Chang Xuexiang. Spatial variability of soil moisture and vegetation in desert-oasis ecotone in the middle reaches of Heihe River Basin[J]. Acta Ecologica Sinica, 2007, 27(5): 1731-1739. ] | |
[2] |
Ji S, Bai X, Qiao R, et al. Width identification of transition zone between desert and oasis based on NDVI and TCI[J]. Scientific Reports, 2020, 10(1): 8672-8679.
doi: 10.1038/s41598-020-65286-5 pmid: 32457337 |
[3] |
魏亚娟, 党晓宏, 汪季, 等. 吉兰泰荒漠绿洲过渡带白刺灌丛沙堆形态示量特征[J]. 干旱区研究, 2023, 40(3): 403-411.
doi: 10.13866/j.azr.2023.03.07 |
[Wei Yajuan, Dang Xiaohong, Wang Ji, et al. Morphological characteristics of Nitraria tangutorum nebkhas in Jilantai desert-oasis ecotone[J]. Arid Zone Research, 2023, 40(3): 403-411. ]
doi: 10.13866/j.azr.2023.03.07 |
|
[4] | Pang Y, Wu B, Jia X, et al. Wind-proof and sand-fixing effects of Artemisia ordosica with different coverages in the Mu Us Sandy Land, northern China[J]. Journal of Arid Land, 2022, 14(8): 877-893. |
[5] |
高君亮, 罗凤敏, 刘泓鑫, 等. 乌兰布和沙漠草方格-灌木林对土壤水分物理性质的影响[J]. 干旱区研究, 2023, 40(5): 737-746.
doi: 10.13866/j.azr.2023.05.06 |
[Gao Junliang, Luo Fengmin, Liu Hongxin, et al. Effects of typical ecological projects of desertification combating on soil physical properties in Ulan Buh Desert[J]. Arid Zone Research, 2023, 40(5): 737-746. ]
doi: 10.13866/j.azr.2023.05.06 |
|
[6] | 李新荣, 马凤云, 龙立群, 等. 沙坡头地区固沙植被土壤水分动态研究[J]. 中国沙漠, 2001, 21(3): 3-8. |
[Li Xinrong, Ma Fengyun, Long Liqun, et al. Soil water dynamics under sand-fixing vegetation in Shapotou area[J]. Journal of Desert Research, 2001, 21(3): 3-8. ] | |
[7] | 王正宁, 王新平. 荒漠灌丛树干茎流及其入渗、再分配特征[J]. 中国沙漠, 2010, 30(5): 1108-1113. |
[Wang Zhengning, Wang Xinping. Stemflow of Caragana korshinskii and its infiltration and redistribution in desert environment[J]. Journal of Desert Research, 2010, 30(5): 1108-1113. ] | |
[8] | 孟晨, 牛健植, 骆紫藤, 等. 华北土石山区森林土壤大孔隙对土壤理化性质及根系的响应[J]. 水土保持学报, 2019, 33(3): 94-100. |
[Meng Chen, Niu Jianzhi, Luo Ziteng, et al. Response of soil macropore to soil phychemical properties and root in forest in rocky mountain area of North China[J]. Journal of Soil and Water Conservation, 2019, 33(3): 94-100. ] | |
[9] | 高朝侠, 徐学选, 赵娇娜, 等. 土壤大孔隙流研究现状与发展趋势[J]. 生态学报, 2014, 34(11): 2801-2811. |
[Gao Chaoxia, Xu Xuexuan, Zhao Jiaona, et al. Review on macropore flow in soil[J]. Acta Ecologica Sinica, 2014, 34(11): 2801-2811. ] | |
[10] | Rab M A, Haling R E, Aarons S R, et al. Evaluation of X-ray computed tomography for quantifying macroporosity of loamy pasture soils[J]. Geoderma, 2014, 213: 460-470. |
[11] | Tian M, Qin S, Whalley W R, et al. Changes of soil structure under different tillage management assessed by bulk density, penetrometer resistance, water retention curve, least limiting water range and X-ray computed tomography[J]. Soil and Tillage Research, 2022, 221: 105420. |
[12] | 蔡太义, 李玮, 王志刚, 等. 长期施肥对砂姜黑土大孔隙形态和数量特征的影响[J]. 农业资源与环境学报, 2022, 39(6): 1106-1114. |
[Cai Taiyi, Li Wei, Wang Zhigang, et al. Effects of long-term fertilization on the morphology and quantity of macropores in vertiso[J]. Journal of Agricultural Resources and Environment, 2022, 39(6): 1106-1114. ] | |
[13] | Zhang Z B, Peng X, Zhou H, et al. Characterizing preferential flow in cracked paddy soils using computed tomography and breakthrough curve[J]. Soil and Tillage Research, 2015, 146: 53-65. |
[14] |
孙程鹏, 赵文智. 土地利用对河西走廊荒漠绿洲区土壤入渗的影响[J]. 中国沙漠, 2021, 41(6): 148-156.
doi: 10.7522/j.issn.1000-694X.2021.00081 |
[35] | [Zhang Jiaming, Xu Zemin. A dye tracer experiment to study macropore flow paths in unsaturated zone under different vegetation communities in Maka Mountain, China[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(6): 1922-1935. ] |
[36] |
赵晨光, 李慧瑛, 鱼腾飞, 等. 腾格里沙漠东北缘人工植被对土壤物理性质的影响[J]. 干旱区研究, 2022, 39(4): 1112-1121.
doi: 10.13866/j.azr.2022.04.12 |
[Zhao Chenguang, Li Huiying, Yu Tengfei, et al. Effects of artificial vegetation construction on soil physical properties in the northeastern edge of Tengger Desert[J]. Arid Zone Research, 2022, 39(4): 1112-1121. ]
doi: 10.13866/j.azr.2022.04.12 |
|
[37] | 石辉, 王峰, 李秧秧. 黄土丘陵区人工油松林地土壤大孔隙定量研究[J]. 中国生态农业学报, 2007, 15(1): 28-32. |
[Shi Hui, Wang Feng, Li Yangyang. Quantitative studies on soil macropores under artificial Chinese pine(Pinus tabuleaformis Carr.) forest in loess hilly region[J]. Chinese Journal of Eco-Agriculture, 2007, 15(1): 28-32. ] | |
[38] | 屈媛媛, 李梦瑶, 徐学选, 等. 内蒙古地区不同撂荒年限草地与沙棘地的渗透能力比较[J]. 水土保持通报, 2023, 43(3): 34-40. |
[Qu Yuanyuan, Li Mengyao, Xu Xuexuan, et al. Comparison of infiltration capacity between grass land of different time lengths of abandonment and Sea buckthorn land in Inner Mongolia[J]. Bulletin of Soil and Water Conservation, 2023, 43(3): 34-40. ] | |
[39] | 孙志祥, 崔俊芳, 杨汝馨, 等. 横断山区森林土壤饱和导水率传递函数的评价与构建研究[J]. 土壤, 2022, 54(3): 594-601. |
[Sun Zhixiang, Cui Junfang, Yang Ruxin, et al. Evaluation and construction of pedo-transfer function of saturated hydraulic conductivity of forest soils in Hengduan Mountain Region[J]. Soils, 2022, 54(3): 594-601. ] | |
[14] |
[Sun Pengcheng, Zhao Wenzhi. Effect of land use on soil infiltration in the desert-oasis of Hexi Corridor[J]. Journal of Desert Research, 2021, 41(6): 148-156. ]
doi: 10.7522/j.issn.1000-694X.2021.00081 |
[15] | 黄娟, 邓羽松, 马占龙, 等. 桂东南花岗岩丘陵区不同土地利用方式土壤大孔隙特征[J]. 水土保持学报, 2021, 35(2): 80-86, 95. |
[Huang Juan, Deng Yusong, Ma Zhanlong, et al. Characteristics of soil macropores in granite hilly region area with different land use types in Southeast Guangxi[J]. Journal of Soil and Water Conservation, 2021, 35(2): 80-86, 95. ] | |
[16] | 王伟, 张洪江, 程金花, 等. 四面山阔叶林土壤大孔隙特征与优先流的关系[J]. 应用生态学报, 2010, 21(5): 1217-1223. |
[Wang Wei, Zhang Hongjiang, Cheng Jinhua, et al. Macropore characteristics and its relationships with the preferential flow in broad leaved forest soils of Simian Mountains[J]. Chinese Journal of Applied Ecology, 2010, 21(5): 1217-1223. ]
pmid: 20707104 |
|
[17] | Iversen B V, Lamandé M, Torp S B, et al. Macropores and macropore transport: Relating basic soil properties to macropore density and soil hydraulic properties[J]. Soil Science, 2012, 177(9): 535-542. |
[18] | Radulovich R, Solorzano E, Sollins P. Soil macropore size distribution from water breakthrough curves[J]. Soil Science Society of America Journal, 1989, 53(2): 556-559. |
[19] | 王金悦, 邓羽松, 李典云, 等. 连栽桉树人工林土壤大孔隙特征及其对饱和导水率的影响[J]. 生态学报, 2021, 41(19): 7689-7699. |
[Wang Jinyue, Deng Yusong, Li Dianyun, et al. Characteristics of soil macropores and their influence on saturated hydraulic conductivity of successive Eucalyptus plantation[J]. Acta Ecologica Sinica, 2021, 41(19): 7689-7699. ] | |
[20] | 石辉, 陈凤琴, 刘世荣. 岷江上游森林土壤大孔隙特征及其对水分出流速率的影响[J]. 生态学报, 2005, 25(3): 507-512. |
[Shi Hui, Chen Fengqin, Liu Shirong. Macropores properties of forest soil and its influence on water effluent in the upper reaches of Minjiang River[J]. Acta Ecologica Sinica, 2005, 25(3): 507-512. ] | |
[21] | 田香姣, 程金花, 杜士才, 等. 重庆四面山草地土壤大孔隙的数量和形态特征研究[J]. 水土保持学报, 2014, 28(2): 292-296. |
[Tian Xiangjiao, Cheng Jinhua, Du Shicai, et al. Study on number and morphological characteristics of soil macropores in grass land in Simian Mountain of Chongqing[J]. Journal of Soil and Water Conservation, 2014, 28(2): 292-296. ] | |
[22] | 李松阳, 刘康妮, 余杭, 等. 云南省蒋家沟不同植被类型土壤物理性质对水分入渗特征的影响[J]. 山地学报, 2021, 39(6): 867-878. |
[Li Songyang, Liu Kangni, Yu Hang, et al. Different vegetation types in the Jiangjia Gully, Yunnan Province, China[J]. Mountain Research, 2021, 39(6): 867-878. ] | |
[23] | 吕刚, 王洪禄, 黄龙. 辽西半干旱区森林土壤大孔隙特征研究[J]. 水土保持通报, 2012, 32(5): 176-181. |
[Lv Gang, Wang Honglu, Huang Long. A study on macropore properties of forest soil in semi-arid region of Western Liaoning Province[J]. Bulletin of Soil and Water Conservation, 2012, 32(5): 176-181. ] | |
[24] | 金兆梁. 不同林龄樟子松人工林土壤优先流特征[D]. 阜新: 辽宁工程技术大学, 2020. |
[Jin Zhaoliang. Soil Preferential Flow Characteristics of Pinus sylvestris var. mongolica Plantations at Different Forest age[D]. Fuxin: Liaoning Technical University, 2020. ] | |
[25] | 张伟, 马建刚, 王开德, 等. 滇西南不同土地利用方式坡地土壤大孔隙特征及与饱和导水率的关系[J]. 西北农林科技大学学报(自然科学版), 2023, 51(4): 84-93. |
[Zhang Wei, Ma Jiangang, Wang Kaide, et al. Characteristics of sloping soil macropores and its relationship with saturated hydraulic conductivity of different land use patterns in South West Yunnan[J]. Journal of Northwest A & F University (Natural Science Edition), 2023, 51(4): 84-93. ] | |
[26] | 敖家坤, 牛健植, 谢宝元, 等. 土壤大孔隙结构对饱和导水率的影响[J]. 北京林业大学学报, 2021, 43(2): 102-112. |
[Ao Jiakun, Niu Jianzhi, Xie Baoyuan, et al. Influence of soil macropore structure on saturated hydraulic conductivity[J]. Journal of Beijing Forestry University, 2021, 43(2): 102-112. ] | |
[27] |
尹本丰, 张元明, 娄安如. 灌丛移除对荒漠齿肋赤藓越冬过程中生理生化特性的影响[J]. 植物生态学报, 2016, 40(7): 723-734.
doi: 10.17521/cjpe.2015.0441 |
[Yin Benfeng, Zhang Yuanming, Lou Anru. Impacts of the removal of vascular plants on physiological and biochemical characteristics of Syntrichia caninervis during winter season in a temperate desert[J]. Chinese Journal of Plant Ecology, 2016, 40(7): 723-734. ]
doi: 10.17521/cjpe.2015.0441 |
|
[28] |
余海龙, 樊瑾, 牛玉斌, 等. 灌丛树干茎流与根区优先流对灌丛沙堆“土壤沃岛效应”的影响研究[J]. 草地学报, 2019, 27(1): 1-7.
doi: 10.11733/j.issn.1007-0435.2019.01.001 |
[Yu Hailong, Fan Jin, Niu Yubin, et al. Review on the influence of bushwood stem flow and root-induced preferential flow on the “soil fertile island effect” of nebkha[J]. Acta Agrestia Sinica, 2019, 27(1): 1-7. ]
doi: 10.11733/j.issn.1007-0435.2019.01.001 |
|
[29] | 赵月, 鲍雪莲, 梁超, 等. 压实对农田土壤特性的影响及应对措施[J]. 土壤通报, 2023, 54(6): 1457-1469. |
[Zhao Yue, Bao Xuelian, Liang Chao, et al. Effects of compaction on farmland soil properties of farms and prevention measures[J]. Chinese Journal of Soil Science, 2023, 54(6): 1457-1469. ] | |
[30] |
巩炜, 胡广录, 付鹏程, 等. 干旱区荒漠-绿洲过渡带固沙植物的土壤水分入渗特征[J]. 中国沙漠, 2020, 40(5): 200-208.
doi: 10.7522/j.issn.1000-694X.2020.00098 |
[Gong Wei, Hu Guanglu, Fu Pengcheng, et al. Soil moisture infiltration characteristics of different sand-fixing plants in the desert-oasis transition zone in arid region of China[J]. Journal of Desert Research, 2020, 40(5): 200-208. ]
doi: 10.7522/j.issn.1000-694X.2020.00098 |
|
[31] |
胡广录, 刘鹏, 李嘉楠, 等. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565.
doi: 10.13866/j.azr.2024.04.03 |
[Hu Guanglu, Liu Peng, Li Jianan, et al. Characteristics of soil moisture dynamics and influencing factors of three landscape types at the oasis edge in the middle reaches of the Heihe River[J]. Arid Zone Research, 2024, 41(4): 550-565. ]
doi: 10.13866/j.azr.2024.04.03 |
|
[32] | 李雪转, 樊贵盛. 土壤有机质含量对土壤渗透能力及参数影响的试验研究[J]. 农业工程学报, 2006, 22(3): 188-190. |
[Li Xuezhuan, Fan Guisheng. Influence of organic matter content on infiltration capacity and parameter in field soils[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(3): 188-190. ] | |
[33] | 王彬俨, 程金花, 张洪江, 等. 北京市昌平区农地土壤大孔隙形成的影响因素分析[J]. 西北农林科技大学学报(自然科学版), 2013, 41(5): 81-86. |
[Wang Binyan, Cheng Jinhua, Zhang Hongjiang, et al. Factors influencing the macropores properties of agricultural land in Changping District, Beijing[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(5): 81-86. ] | |
[34] | 田昕, 赵勇钢, 刘啟霞, 等. 黄土丘陵区长期种植柠条坡地土壤饱和导水率及其影响因素[J]. 中国水土保持科学, 2023, 21(4): 20-27. |
[Tian Xin, Zhao Yonggang, Liu Qixia, et al. Soil saturated hydraulic conductivity and its influencing factors of long-term planting of Lime strips on slopes in loess hilly areas[J]. Science of Soil and Water Conservation, 2023, 21(4): 20-27. ] | |
[35] | 张家明, 徐则民. 马卡山不同植被群落下非饱和带大孔隙流路径示踪试验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1922-1935. |
[1] | 汪海娇,田丽慧,张登山,王俏雨. 青海湖东沙地不同植被恢复措施下土壤水分变化特征[J]. 干旱区研究, 2021, 38(1): 76-86. |
[2] | 缑倩倩, 李乔乔, 屈建军, 王国华. 荒漠-绿洲过渡带土壤温度变化分析[J]. 干旱区研究, 2019, 36(4): 809-815. |
|