干旱区研究 ›› 2023, Vol. 40 ›› Issue (7): 1075-1084.doi: 10.13866/j.azr.2023.07.05 cstr: 32277.14.j.azr.2023.07.05
收稿日期:
2023-03-02
修回日期:
2023-05-23
出版日期:
2023-07-15
发布日期:
2023-08-01
作者简介:
袁瑞强(1980-),男,教授,博士,主要从事水循环与水环境方面的研究. E-mail: 基金资助:
Received:
2023-03-02
Revised:
2023-05-23
Published:
2023-07-15
Online:
2023-08-01
摘要:
非降雨水对干旱和半干旱区的水平衡和生态非常重要。本文归纳总结了非降雨水的测量和模拟方法,分析并综述了研究现状。非降雨水是陆气间较小的通量,时空变异强,直接测定存在困难。利用专门的冷凝器可获得可观的结露量。露水研究集中于干旱与半干旱区的站点尺度,雾水研究集中在沿海和山区,水汽吸附研究主要在旱地。非降雨水的收集利用及其对生态环境的影响是研究热点。然而,露水研究较多,雾水和水汽吸附研究明显偏少。同时,自然表面结露、大空间尺度和长期的研究较少。在非降雨水的时空变化规律认识方面存在明显的知识缺口。
袁瑞强,李泽君. 非降雨水研究进展[J]. 干旱区研究, 2023, 40(7): 1075-1084.
YUAN Ruiqiang,Li Zejun. Research progress in non-rainfall water: A review[J]. Arid Zone Research, 2023, 40(7): 1075-1084.
表1
露水产量估算模型"
模型 | 公式 | 解释 |
---|---|---|
Beysens模型[ | H是高程;Td是露点温度;N是云量;u是10 m处风速,u0=4.4 m·s-1;Ta是气温;b是Td -Ta与露水产量的斜率 | |
能量平衡模型[ | dTc/dt是冷凝器温度的变化率;Cc、Cw和Ci是冷凝器、水和冰的比热容;mc、mw和mi是冷凝器、水和冰的质量;Prad是进出辐射;Pcond是冷凝器表面与地面之间的传导热交换;Pconv是对流热交换;Plat是水的冷凝释放的潜热 | |
PM方程[ | Rn是净辐射;G是土壤热通量;δe是水蒸汽压差;ρa是空气密度;Cp是空气热容;S是蒸汽压与温度曲线的斜率;γ是湿度常数;ga是蒸汽传导率;Δ是饱和蒸汽压随温度的增加;Cn和Cd是随参考类型和计算时间步长而变化的常数;U2是2 m处风速;es是饱和蒸汽压;ea是实际蒸汽压 | |
波文比能量平衡模型[ | Rn是净辐射;G是土壤热通量;γ是湿度常数;ΔT和Δea分别是温度和蒸汽压差 |
表2
近年的露水产量研究"
地点 | 气温/℃ | 降水量/mm | 时间/年-月 | 植被 | 方法 | 露量 |
---|---|---|---|---|---|---|
中国科学院伊犁流域[ (43°20′N,84°00′E,1157 m) | - | 200~800 | 2021-07—2021-08; 2021-09—2021-10 | 禾本科、豆科、菊科 | 布板法 | 2.50 mm 0.05 mm·d-1 |
甘肃省白银市平埠村[ (36°25′N,104°25′E,1461 m) | 8.9 | 238 | 2018-04—2018-09;2019-04—2019-09;2020-04—2020-09 | 玉米 | 叶片湿度传感器 | 0.10 mm·d-1 |
维科萨联邦大学[ (20°77′S,42°87′W,665 m) | - | - | 2018-08—2018-10 | - | 冷凝器 | 0.05~0.15 mm·d-1 |
甘肃省河西走廊黑河流域[ (39°24′N,100°07′E,1405 m) | 7.6 | 117 | 2016-06—2016-10 | 灌木、草本物种 | 微蒸渗仪 | 0.06 mm·d-1 |
肯尼亚马克陶[ (3°25′S,38°08′E,1060 m) | - | - | 2016-04—2017-03 | - | 冷凝器(PVC、PE、OPUR) | 0.07~0.10 mm·d-1 18.90~25.30 mm |
古尔班通古特沙漠[ (44°48′N,85°33′E) | 6.6 | 70~180 | 2015-08—2018-12 | 生物结皮 | 叶片湿度传感器 | 0.10 mm·d-1 12.21 mm·a-1 |
中国宁夏-北京林业大学[ (37°42′N,107°14′E,1530 m) | 8.3 | 291 | 2015-05—2015-12 | 黑沙蒿和北沙柳 | 叶片湿度传感器、PM | 0~0.04 mm·d-1 |
陕西省三元县[ (34°33'N,108°54'E,420 m) | 13.6 | 533 | 2014-01—2016-12 | - | 叶片湿度传感器 | 0~0.88 mm·d-1 32.80 mm·a-1 |
内蒙古多伦县[ (42°04′N,116°32′E,1318 m) | 1.6 | 385 | 2014-07—2014-10 | 榆树林, 草原 | 称重法 | 0.12 mm·d-1 0.24 mm·d-1 |
黎巴嫩贝特丁[ (920 m) | - | - | 2014-03—2014-10; 2013-07—2013-10 | - | 冷凝器(PE) | 0.13 mm·d-1 |
马达加斯加西南沿海[ (24°04′S,43°42′E,10 m) | 24.0 | 360 | 2013-04—2014-09 | 稀疏的草 | 天平称重 | 0.12 mm·d-1 |
巴丹吉兰沙漠[ (39°21′N,100°07′E,1374 m) | 7.6 | 117 | 2013-06—2013-10 | 灌木为主,梭梭林 | 微蒸渗仪 | 16.10 mm 0.13 mm·d-1 |
毛乌素沙漠[ (37°42′N,107°13′E,1530 m) | 8.1 | 292 | 2012-04—2012-10 | 黑沙蒿 | 涡度相关 | 0.05 mm·d-1 |
墨西哥哈利斯科州[ (21°46′N,101°36′W,2240 m) | 15.1 | 424 | 2011-01—2016-12 | 草原,格兰马草 | PM | 0.20 mm·d-1 16.50~69.00 mm·a-1 |
西班牙卡塔赫纳技术大学[ (37°41′N,0°57′W,30 m) | 17.5 | 350 | 2011-01—2012-01 | - | 冷凝器 A级盘 | 17.42 mm·a-1 7.84 mm·a-1 |
塔克拉玛干沙漠[ (40°28′N,87°51′E,842 m) | 11.5 | 35 | 2011-06—2011-10 | 杨树林 | 涡度相关 | 0.12 mm·d-1 12.87 mm. |
中国科学院三江平原[ (47°35'N,133°31'E,56 m) | 1.9 | 550~600 | 2010-05—2010-10 | 黄杨、苔草、大豆、水稻 | 冷凝器 | 4.25~30.18 mm |
河北石家庄栾城[ (37°31′N,114°24′E,50 m) | 12.8 | 366~598 | 2008-04—2008-09;2009-04—2009-09;2010-04—2010-09 | 小麦、玉米 | 涡度相关 | 7.61 mm·a-1 |
中国临泽内河流域研究站[ (39°21′N,100°07′E) | 7.6 | - | 2008-08—2008-09; 2007-01—2007-12 | 灌木 | 布板法 | 0.05~0.06 mm·d-1 |
西班牙阿尔梅里亚[ (36°56′N,2°01'W,208 m) | 18.0 | 220 | 2007-01—2010-12 | 草原 | 叶片湿度传感器和PM | 182.00 mm 0.15 mm·d-1 |
印度科塔拉[ (23°14′N,68°45′E,21 m) | - | 300 | 2004-10—2005-05 | - | 冷凝屋顶(18 m2) | 6.30 mm 0.09 mm·d-1 |
荷兰瓦赫宁根大学[ (51°58′N,5°38′E,7 m) | - | - | 2003-12—2005-05 | 多年生黑麦草和普通早熟禾 | 冷凝器(OPUR、PVC) | 0.10~0.20 mm·d-1 |
[1] | Kidron G J, Starinsky A. Measurements and ecological implications of non-rainfall water in desert ecosystems- a review[J]. Ecohydrology, 2019, 12(6): e2121. |
[2] |
Zhang Q, Wang S, Yue P, et al. A measurement, quantitative identification and estimation method (QINRW) of non-rainfall water component by lysimeter[J]. MethodsX, 2019, 6(6): 2873-2881.
doi: 10.1016/j.mex.2019.11.012 |
[3] |
Zhang Q, Wang S, Yue P, et al. Variation characteristics of non-rainfall water and its contribution to crop water requirements in China’s summer monsoon transition zone[J]. Journal of Hydrology, 2019, 578(5): 124039.
doi: 10.1016/j.jhydrol.2019.124039 |
[4] | Gao Z Y, Shi W J, Wang X, et al. Non-rainfall water contributions to dryland jujube plantation evapotranspiration in the hilly loess region of China[J]. Journal of Hydrology, 2020, 583(7-8): 124604. |
[5] |
Uclés O, Villagarcía L, Cantón Y, et al. Non-rainfall water inputs are controlled by aspect in a semiarid ecosystem[J]. Journal of Arid Environments, 2015, 113(2): 43-50.
doi: 10.1016/j.jaridenv.2014.09.009 |
[6] | Mchugh T A, Morrissey E M, Reed S C, et al. Water from air: An overlooked source of moisture in arid and semiarid regions[J]. Scientific Report, 2015, 5(1): 13767. |
[7] | Wang L X, Kaseke K F, Seely M K. Effects of non-rainfall water inputs on ecosystem functions[J]. WIREs Water, 2016, 4(1): e1179. |
[8] |
Agam N, Berliner P R. Dew formation and water vapor adsorption in semi-arid environments-a review[J]. Journal of Arid Environments, 2006, 65(4): 572-590.
doi: 10.1016/j.jaridenv.2005.09.004 |
[9] |
Kaseke K F, Mills A J, Esler K, et al. Spatial variation of “Non-Rainfall” water input and the effect of mechanical soil crusts on input and evaporation[J]. Pure and Applied Geophysics, 2012, 169(12): 2217-2229.
doi: 10.1007/s00024-012-0469-5 |
[10] |
Kaseke K F, Mills A J, Brown R, et al. A method for direct assessment of the “Non Rainfall” atmospheric water cycle: Input and evaporation from the soil[J]. Pure and Applied Geophysics, 2011, 169(5-6): 847-857.
doi: 10.1007/s00024-011-0328-9 |
[11] |
Zheng J L, Peng C R, Li H, et al. The role of non-rainfall water on physiological activation in desert biological soil crusts[J]. Journal of Hydrology, 2018, 556(1-2): 790-799.
doi: 10.1016/j.jhydrol.2017.12.003 |
[12] | Clément L C, Roberto L, Enrique P S C. Water vapor adsorption by dry soils: A potential link between the water and carbon cycles[J]. Science of The Total Environment, 2022, 824(11-12): 153746. |
[13] |
Zhang Q, Wang S, Yang F L, et al. Characteristics of dew formation and distribution, and its contribution to the surface water budget in a semi-arid region in China[J]. Boundary-Layer Meteorology, 2014, 154(2): 317-331.
doi: 10.1007/s10546-014-9971-x |
[14] | Kaseke K F, Wang L X, Seely M K. Nonrainfall water origins and formation mechanisms[J]. Science Advances, 2017, 3(3): e1603131. |
[15] |
Li Y F, Aemisegger F, Riedl A, et al. The role of dew and radiation fog inputs in the local water cycling of a temperate grassland during dry spells in central Europe[J]. Hydrology and Earth System Sciences, 2021, 25(5): 2617-2648.
doi: 10.5194/hess-25-2617-2021 |
[16] |
Cynthia G S, Michael C K, Michaella C, et al. Dew deposition suppresses transpiration and carbon uptake in leaves[J]. Agricultural and Forest Meteorology, 2018, 259(9): 305-316.
doi: 10.1016/j.agrformet.2018.05.015 |
[17] | Tomaszkiewicz M, Abou N M, Beysens D, et al. Projected climate change impacts upon dew yield in the Mediterranean basin[J]. Science of Total Environment, 2016, 566- 567(19-20): 1339-1348. |
[18] |
Zhang Q, Wang S, WANG S S, et al. Influence factors and variation characteristics of water vapor absorption by soil in semi-arid region[J]. Science China Earth Sciences, 2016, 59(11): 2240-2251.
doi: 10.1007/s11430-015-5531-5 |
[19] |
孙自永, 程国栋, 马瑞, 等. 雾水的D和18O同位素研究进展[J]. 地球科学进展, 2008, 23(8): 794-802.
doi: 10.11867/j.issn.1001-8166.2008.08.0794 |
[Sun Ziyong, Cheng Guodong, Ma Rui, et al. Advances in the D and 18O isotopes of fog water[J]. Advance in Earth Science, 2008, 23(8): 794-802. ]
doi: 10.11867/j.issn.1001-8166.2008.08.0794 |
|
[20] | 郭占荣, 刘建辉. 中国干旱半干旱地区土壤凝结水研究综述[J]. 干旱区研究, 2005, 22(4): 160-164. |
[Guo Zhanrong, Liu Jianhui. An overview on soil condensate in arid and semiarid regions in China[J]. Arid Zone Research, 2005, 22(4): 160-164. ] | |
[21] |
Jia Z F, Ma Y D, Liu P, et al. Relationship between sand dew and plant leaf dew and its significance in irrigation water supplementation in Guanzhong Basin, China[J]. Environmental Earth Sciences, 2019, 78(12): 1-10.
doi: 10.1007/s12665-018-7995-0 |
[22] |
Tomaszkiewicz M, Abou N M, Zurayk R, et al. Dew as an adaptation measure to meet water demand in agriculture and reforestation[J]. Agricultural and Forest Meteorology, 2017, 232(1): 411-421.
doi: 10.1016/j.agrformet.2016.09.009 |
[23] |
Groh J, Slawitsch V, Herndl M, et al. Determining dew and hoar frost formation for a low mountain range and alpine grassland site by weighable lysimeter[J]. Journal of Hydrology, 2018, 563(15-16): 372-381.
doi: 10.1016/j.jhydrol.2018.06.009 |
[24] | Kool D, Agra E, Drabkin A, et al. The overlooked non-rainfall water input sibling of fog and dew: Daily water vapor adsorption on a !Nara hummock in the Namib sand sea[J]. Journal of Hydrology, 2021, 598(13-14): 126420. |
[25] | Uclés O, Villagarcia L, Canton Y, et al. Microlysimeter station for long term non-rainfall water input and evaporation studies[J]. Agricultural and Forest Meteorology, 2013, 182- 183(12): 13-20. |
[26] | Li S L, Bowker M A, Xiao B. Biocrusts enhance non-rainfall water deposition and alter its distribution in dryland soils[J]. Journal of Hydrology, 2021, 595(7-8): 126050. |
[27] | Zhang S Y, Li J Z, Zhang T, et al. How does dewfall affect drought assessment in different climate regions in China[J]. Journal of Hydrology, 2022, 616(1-2): 128601. |
[28] |
Feng T, Huang F R, Zhu S Z, et al. Dew amount and its long-term variation in the Kunes River valley, Northwest China[J]. Journal of Arid Land, 2022, 14(7): 753-770.
doi: 10.1007/s40333-022-0099-4 |
[29] |
Zhuang Y L, Zhao W Z. Dew variability in three habitats of a sand dune transect in a desert oasis ecotone, northwestern China[J]. Hydrological Processes, 2014, 28(3): 1399-1408.
doi: 10.1002/hyp.v28.3 |
[30] |
Wang C D, Cen Y, Liu M Z, et al. Formation and influencing factors of dew in sparse elm woods and grassland in a semi-arid area[J]. Acta Ecologica Sinica, 2017, 37(3): 125-132.
doi: 10.1016/j.chnaes.2017.06.004 |
[31] | Feng T J, Zhang L X, Chen Q, et al. Dew formation reduction in global warming experiments and the potential consequences[J]. Journal of Hydrology, 2021, 593(3-4): 125819. |
[32] |
Yokoyama G, Yasutake D, Wang W Z, et al. Limiting factor of dew formation changes seasonally in a semiarid crop field of Northwest China[J]. Agricultural and Forest Meteorology, 2021, 311(12): 108705.
doi: 10.1016/j.agrformet.2021.108705 |
[33] | Cheng L, Yue Y P, Zhou H, et al. Biological soil crusts enhance the role of non-rainfall water in the water input in alpine sandy land ecosystems[J]. Journal of Hydrology, 2022, 610(13-14): 127966. |
[34] | Tuure J, Korpela A, Hautala M, et al. Comparison of surface foil materials and dew collectors location in an arid area: A one-year field experiment in Kenya[J]. Agricultural and Forest Meteorology, 2019, 276- 277(10): 107613. |
[35] |
Price J D, Clark R. On the measurement of dewfall and fog-droplet deposition[J]. Boundary-Layer Meteorology, 2014, 152(3): 367-393.
doi: 10.1007/s10546-014-9930-6 |
[36] | Guo X N, Wang Y F, Yan H M, et al. Dew/hoar frost on the canopies and underlying surfaces of two typical desert shrubs in Northwest China and their relevance to drought[J]. Journal of Hydrology, 2022, 609(11-12): 10880. |
[37] | Hao X M, Li C, Guo B, et al. Dew formation and its long-term trend in a desert riparian forest ecosystem on the eastern edge of the Taklimakan Desert in China[J]. Journal of Hydrology, 2012, 472- 473(22): 90-98. |
[38] |
Xiao H J, Meissner R, Borg H, et al. Agreement of four equations for computing dewfall in Northern Germany[J]. Water, 2017, 9(8): 607.
doi: 10.3390/w9080607 |
[39] |
Zhuang Y L, Zhao W Z. Dew formation and its variation in Haloxylon ammodendron plantations at the edge of a desert oasis, Northwestern China[J]. Agricultural and Forest Meteorology, 2017, 247(12): 541-550.
doi: 10.1016/j.agrformet.2017.08.032 |
[40] | Lekouch I, Lekouch K, Muselli M, et al. Rooftop dew, fog and rain collection in Southwest Morocco and predictive dew modeling using neural networks[J]. Journal of Hydrology, 2012, 448- 449(13): 60-72. |
[41] |
Jacobs A F G, Heusinkveld B G, Berkowicz S M. Passive dew collection in a grassland area, The Netherlands[J]. Atmospheric Research, 2008, 87(3-4): 377-385.
doi: 10.1016/j.atmosres.2007.06.007 |
[42] |
Corraide D S L, Oliveira F D, Acioli I H M, et al. Analysis of different condensing surfaces for dew harvesting[J]. Water Supply, 2022, 22(1): 697-706.
doi: 10.2166/ws.2021.242 |
[43] | Maestre V J F, Ragab R, Martínez A V, et al. Estimation of dew yield from radiative condensers by means of an energy balance model[J]. Journal of Hydrology, 2012, 460- 461(16): 103-109. |
[44] |
Maestre V J F, Martin G B, Martínez A V. Dew condensation on different natural and artificial passive surfaces in a semiarid climate[J]. Journal of Arid Environments, 2015, 116(5): 63-70.
doi: 10.1016/j.jaridenv.2015.02.002 |
[45] |
Atashi N, Rahimi D, Kuisi M A, et al. Modeling long-term temporal variation of dew formation in Jordan and its link to climate change[J]. Water, 2020, 12(8): 2186.
doi: 10.3390/w12082186 |
[46] |
Jia Z F, Zhao Z Q, Zhang Q Y, et al. Dew yield and its influencing factors at the western edge of Gurbantunggut Desert, China[J]. Water, 2019, 11(4): 733.
doi: 10.3390/w11040733 |
[47] |
Beysens D. Estimating dew yield worldwide from a few meteo data[J]. Atmospheric Research, 2016, 167(1): 146-155.
doi: 10.1016/j.atmosres.2015.07.018 |
[48] |
Tomaszkiewicz M, Abou N M, Beysens D, et al. Dew as a sustainable non-conventional water resource: A critical review[J]. Environmental Reviews, 2015, 23(4): 425-442.
doi: 10.1139/er-2015-0035 |
[49] |
Vuollekoski H, Vogt M, Sinclair V A, et al. Estimates of global dew collection potential on artificial surfaces[J]. Hydrology and Earth System Sciences, 2015, 19(1): 601-613.
doi: 10.5194/hess-19-601-2015 |
[50] |
Atashi N, Rahimi D, Goortani B, et al. Spatial and temporal investigation of dew potential based on long-term model simulations in Iran[J]. Water, 2019, 11(12): 2463.
doi: 10.3390/w11122463 |
[51] |
Moro M J, Were A, Villagarcía L, et al. Dew measurement by eddy covariance and wetness sensor in a semiarid ecosystem of SE Spain[J]. Journal of Hydrology, 2007, 335(3-4): 295-302.
doi: 10.1016/j.jhydrol.2006.11.019 |
[52] |
Uclés O, Villagarcía L, Moro M J, et al. Role of dewfall in the water balance of a semiarid coastal steppe ecosystem[J]. Hydrological Processes, 2014, 28(4): 2271-2280.
doi: 10.1002/hyp.9780 |
[53] | Berrones G, Crespo P, Wilcox B P, et al. Assessment of fog gauges and their effectiveness in quantifying fog in the Andean páramo[J]. Ecohydrology, 2021, 14(6): e2300. |
[54] |
Echeverría P, Domínguez C, Villacís M, et al. Fog harvesting potential for domestic rural use and irrigation in San Cristobal Island, Galapagos, Ecuador[J]. Cuadernos de Investigación Geográfica, 2020, 46(2): 563-580.
doi: 10.18172/cig.vol46iss2 |
[55] |
Katata G. Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(13): 8137-8159.
doi: 10.1002/2014JD021669 |
[56] |
Chang S C, Yeh C F, Wu M J, et al. Quantifying fog water deposition by in situ exposure experiments in a mountainous coniferous forest in Taiwan[J]. Forest Ecology and Management, 2006, 224(1-2): 11-18.
doi: 10.1016/j.foreco.2005.12.004 |
[57] |
Körner P, Dieter K, Rico K, et al. REAL-Fog: A Simple approach for calculating the fog in the atmosphere at ground level[J]. Meteorologische Zeitschrift, 2020, 29(1): 55-65.
doi: 10.1127/metz/2019/0976 |
[58] |
Katata G, Nagai H, Kajino M, et al. Numerical study of fog deposition on vegetation for atmosphere-land interactions in semi-arid and arid regions[J]. Agricultural and Forest Meteorology, 2010, 150(3): 340-353.
doi: 10.1016/j.agrformet.2009.11.016 |
[59] |
Dimitrova R, Sharma A, Fernando H J S, et al. Simulations of coastal fog in the Canadian Atlantic with the Weather Research and Forecasting Model[J]. Boundary-Layer Meteorology, 2021, 181(2-3): 443-472.
doi: 10.1007/s10546-021-00662-w |
[60] | Taylor P A, Chen Z Q, Cheng L, et al. Surface deposition of marine fog and its treatment in the Weather Research and Forecasting (WRF) model[J]. Atmospheric Chemistry and Physics, 2021, 21(19): 14687-14702. |
[61] |
Kim C K, Yum S S. A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the Weather Research and Forecasting Model[J]. Boundary-Layer Meteorology, 2012, 143(3): 481-505.
doi: 10.1007/s10546-012-9706-9 |
[62] | Fernando H J S, Gultepe I, Dorman C, et al. C-FOG: life of coastal fog[J]. Bulletin of the American Meteorological Society, 2021, 102(2): 244-272. |
[63] |
Gultepe I, Heymsfield A J, Fernando H J S, et al. A review of coastal fog microphysics during C-FOG[J]. Boundary-Layer Meteorology, 2021, 181(2-3): 227-265.
doi: 10.1007/s10546-021-00659-5 |
[64] | 肖艳芳, 张杰, 崔廷伟, 等. 海雾卫星遥感监测研究进展[J]. 海洋科学, 2017, 41(12): 146-154. |
[Xiao Yanfang, Zhang Jie, Cui Tingwei, et al. Review of sea fog detection from satellite remote sensing data[J]. Marine Science, 2017, 41(12): 146-154. ] | |
[65] |
Verhoef A, Diaz E A, Knight J R, et al. Adsorption of water vapor by bare soil in an olive grove in Southern Spain[J]. Journal of Hydrometeorology, 2006, 7(5): 1011-1027.
doi: 10.1175/JHM556.1 |
[66] |
Kohfahl C, Saaltink M W, Ruiz B F. Vapor flow control in dune sediments under dry bare soil conditions[J]. Science of The Total Environment, 2021, 786(17): 147404.
doi: 10.1016/j.scitotenv.2021.147404 |
[67] |
Leão T P, Tuller M. Relating soil specific surface area, water film thickness, and water vapor adsorption[J]. Water Resources Research, 2014, 50(10): 7873-7885.
doi: 10.1002/2013WR014941 |
[68] | Luo S M, Lu N, Dong Y. Determination of soil sorptive potential by soil water isotherm[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(6): 159. |
[69] | Saaltink M W, Kohfahl C, Molano L L. Analysis of water vapor adsorption in soils by means of a lysimeter and numerical modeling[J]. Vadose Zone Journal, 2020, 19(1): e20012. |
[70] |
Sibley A, Schulze M, Jones J, et al. Canopy wetting patterns and the determinants of dry season dewfall in an old growth Douglas-fir canopy[J]. Agricultural and Forest Meteorology, 2022, 323(8): 109069.
doi: 10.1016/j.agrformet.2022.109069 |
[71] |
Zhuang Y L, Zhao W Z, Luo L H, et al. Dew formation characteristics in the gravel desert ecosystem and its ecological roles on Reaumuria soongorica[J]. Journal of Hydrology, 2021, 603(24): 126932.
doi: 10.1016/j.jhydrol.2021.126932 |
[72] |
Jia Z F, Wang Z, Wang H. Characteristics of dew formation in the semi-arid loess plateau of central Shaanxi Province, China[J]. Water, 2019, 11(1): 126.
doi: 10.3390/w11010126 |
[73] |
Hanisch S, Lohrey C, Buerkert A. Dewfall and its ecological significance in semi-arid coastal south-western Madagascar[J]. Journal of Arid Environments, 2015, 121(10): 24-31.
doi: 10.1016/j.jaridenv.2015.05.007 |
[74] |
Guo X N, Zha T S, Jia X, et al. Dynamics of dew in a cold desert-shrub ecosystem and its abiotic controls[J]. Atmosphere, 2016, 7(3): 32.
doi: 10.3390/atmos7030032 |
[75] |
Aguirre G C A, Holwerda F, Goldsmith G R, et al. The importance of dew in the water balance of a continental semiarid grassland[J]. Journal of Arid Environments, 2019, 168(9): 26-35.
doi: 10.1016/j.jaridenv.2019.05.003 |
[76] |
Xu Y Y, Yan B X, Luan Z Q, et al. Dewfall variation by large-scale reclamation in Sanjiang Plain[J]. Wetlands, 2012, 32(4): 783-790.
doi: 10.1007/s13157-012-0314-8 |
[77] |
Guo X Y, Zhang T, Zha G, et al. Biophysical controls of dew formation in a typical cropland and its relationship to drought in the North China Plain[J]. Journal of Hydrology, 2023, 617(4): 128945.
doi: 10.1016/j.jhydrol.2022.128945 |
[78] |
Sharan G D, Beysens D, Milimouk M I. A study of dew water yields on galvanized iron roofs in Kothara (North-West India)[J]. Journal of Arid Environments, 2007, 69(2): 259-269.
doi: 10.1016/j.jaridenv.2006.09.004 |
[79] |
Dorman C E, Grachev A A, Gultepe I, et al. Toward improving coastal-fog prediction (C-FOG)[J]. Boundary-Layer Meteorology, 2021, 181(2-3): 167-170.
doi: 10.1007/s10546-021-00664-8 |
[80] |
Dorman C E, Hoch S W, Gultepe I, et al. Large-scale synoptic systems and fog during the C-FOG field experiment[J]. Boundary-Layer Meteorology, 2021, 181(2-3): 171-202.
doi: 10.1007/s10546-021-00641-1 |
[81] |
Wagh S, Krishnamurthy R, Wainwright C, et al. Study of stratus-lowering marine-fog events observed during C-FOG[J]. Boundary-Layer Meteorology, 2021, 181(2-3): 317-344.
doi: 10.1007/s10546-021-00670-w |
[82] |
Chisholm N, Nagare B, Wainwright C, et al. Characterizing atmospheric aerosols off the Atlantic Canadian coast during C-FOG[J]. Boundary-Layer Meteorology, 2021, 181(2-3): 345-364.
doi: 10.1007/s10546-021-00673-7 |
[83] |
Jin G Q, Gao S H, Shi H, et al. Impacts of sea-land breeze circulation on the formation and development of coastal sea fog along the Shandong Peninsula: A case study[J]. Atmosphere, 2022, 13(2): 165.
doi: 10.3390/atmos13020165 |
[84] | 田梦, 吴彬贵, 黄鹤, 等. 环渤海近海岸雾产生的天气条件及边界层特征分析[J]. 气候与环境研究, 2020, 25(2): 199-210. |
[Tian Meng, Wu B ingui, Huang He, et al. The synoptic condition and boundary layer characteristics of coastal fog around the Bohai Sea[J]. Climatic and Environmental Research, 2020, 25(2): 199-210. ] | |
[85] | 廖晨菲, 冯志明, 高聪晖, 等. 福建沿海一次持续性海雾过程的边界层特征分析[J]. 海峡科学, 2022, 38(7): 9-13. |
[Liao Chenfei, Feng Zhiming, Gao Conghui, et al. Analysis of boundary layer characteristics of a sustained sea fog process along Fujian coast[J]. Strait Science, 2022, 38(7): 9-13. ] | |
[86] | 周群, 黄焕卿, 邓小花, 等. 珠江口海雾天气气候特征及成因分析[J]. 海洋预报, 2022, 39(1): 1-10. |
[Zhou Qun, Huang Huanqing, Deng Xiaohua, et al. Climatic characteristics and causes of sea fog in the Pearl River Estuary[J]. Marine Forecast, 2022, 39(1): 1-10. ] | |
[87] |
Arnold R, Haug J K, Lange M, et al. Impact of forest cover change on available water resources: Long-term forest cover dynamics of the semi-arid dhofar cloud forest, Oman[J]. Frontiers in Earth Science, 2020, 8(8): 1-10.
doi: 10.3389/feart.2020.00001 |
[88] | Ramírez B H, Melsen L A, Ganzeveld L, et al. Tropical montane cloud forests in the Orinoco River basin: inferring fog interception from through-fall dynamics[J]. Agricultural and Forest Meteorology, 2018, 260- 261(10): 17-30. |
[89] |
Castelli G, Sanchez A C, Mestrallet A, et al. Fog as unconventional water resource: Mapping fog occurrence and fog collection potential for food security in Southern Bolivia[J]. Journal of Arid Environments, 2023, 208(1): 104884.
doi: 10.1016/j.jaridenv.2022.104884 |
[90] | 刘澄静, 角媛梅, 吴常润, 等. 关键环境因子及水汽来源对雾水氢氧稳定同位素组成特征的影响[J]. 水文, 2021, 41(3): 38-43, 87. |
[Liu Chengjing, Jiao Yuanmei, Wu Changrun, et al. Impacts of key environmental factors and water vapor sources on the composition characteristics of stable oxygen and hydrogen isotopes in fog water[J]. Journal of China Hydrology, 2021, 41(3): 38-43, 87. ] | |
[91] | 陈建生, 赵洪波, 詹泸成. 赤水林区旱季雾水对地表径流的水量贡献[J]. 水科学进展, 2016, 27(3): 377-384. |
[Chen Jiansheng, Zhao Hongbo, Zhan Lucheng. Water contribution of fog drip to surface runoff in Chishui forest region during the dry season[J]. Advances in Water Science, 2016, 27(3): 377-384. ] | |
[92] |
Hůnová I, Darina H, Kateřina J, et al. Estimates of the contribution of fog to wet atmospheric deposition in Czech Mountain forests based on its stable hydrogen and oxygen isotope composition: preliminary results[J]. European Journal of Environmental Sciences, 2021, 10(2): 89-97.
doi: 10.14712/23361964.2020.10 |
[93] | Tian C, Jiao W Z, Beysens D, et al. Investigating the role of evaporation in dew formation under different climates using 17O-excess[J]. Journal of Hydrology, 2021, 592(1-2): 125847. |
[94] |
Wen X F, Lee X H, Sun X M, et al. Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China[J]. Oecologia, 2012, 168(2): 549-561.
doi: 10.1007/s00442-011-2091-0 |
[95] |
Fu P L, Liu W J, Fan Z X, et al. Is fog an important water source for woody plants in an Asian tropical karst forest during the dry season[J]. Ecohydrology, 2016, 9(6): 964-972.
doi: 10.1002/eco.v9.6 |
[96] |
Xu Y Y, Yi Y, Yang X. Using stable hydrogen and oxygen isotopes to distinguish the sources of plant leaf surface moisture in an urban Environment[J]. Water, 2019, 11(11): 2287.
doi: 10.3390/w11112287 |
[97] |
Ouyang H, Lan S B, Yang H J, et al. Mechanism of biocrusts boosting and utilizing non-rainfall water in Hobq Desert of China[J]. Applied Soil Ecology, 2017, 120(11): 70-80.
doi: 10.1016/j.apsoil.2017.07.024 |
[98] |
Li S L, Xiao B, Sun F H, et al. Moss-dominated biocrusts enhance water vapor sorption capacity of surface soil and increase non-rainfall water deposition in drylands[J]. Geoderma, 2021, 388(4): 114930.
doi: 10.1016/j.geoderma.2021.114930 |
[99] |
Kidron G J, Kronenfeld R. Microlysimeters overestimate the amount of non-rainfall water-an experimental approach[J]. Catena, 2020, 194(11): 104691.
doi: 10.1016/j.catena.2020.104691 |
[1] | 罗瑞敏, 郭梁, 程积民. 近20 a云雾山草地生产力对气候变化的响应[J]. 干旱区研究, 2018, 35(01): 77-84. |
[2] | 刘贤德, 赵维俊, 张学龙, 敬文茂, 范莉梅. 祁连山排露沟流域青海云杉林土壤养分和pH变化特征[J]. 干旱区研究, 2013, 30(6): 1013-1020. |
[3] | 向亮, 胡波, 谷永利. 1961-2010年河北省日照变化分析[J]. 干旱区研究, 2012, 29(3): 503-509. |
[4] | 赵桂香, 杜莉, 卫丽萍, 贺耀武, 李莹, 朱煜. 一次持续性区域雾霾天气的综合分析[J]. 干旱区研究, 2011, 28(5): 871-878. |
[5] | 余绍文, 孙自永, 周爱国, 段丽军. 黑河中游临泽地区夏季露水的生成[J]. 干旱区研究, 2011, 28(3): 471-477. |
[6] | 张志富, 希爽. 关于露点温度计算的探讨[J]. 干旱区研究, 2011, 28(2): 275-281. |
|