干旱区研究 ›› 2018, Vol. 35 ›› Issue (2): 425-435.doi: 10.13866/j.azr.2018.02.22

• 气候及气候资源 • 上一篇    下一篇

基于GCM和冰芯的天山地区降水同位素的水汽来源影响机制

杨森1, 张明军1, 王圣杰1,2   

  1. 1.西北师范大学地理与环境科学学院,甘肃 兰州 730070;
    2.中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室,甘肃 兰州 730070
  • 收稿日期:2017-06-11 修回日期:2017-07-22 出版日期:2018-03-15 发布日期:2025-11-17
  • 通讯作者: 张明军. E-mail: mjzhang2004@163.com
  • 作者简介:杨森(1993-),女,硕士研究生,主要从事全球变化与可持续发展方面的研究. E-mail: geoyangsen@126.com
  • 基金资助:
    国家自然科学基金项目(41161012);国家重大科学研究计划专题项目(2013CBA01801);冰冻圈科学国家重点实验室开放基金项目(SKLCS-OP-2017-04);中国沙漠气象科学研究基金项目(Sqj2016001);西北师范大学青年教师科研能力提升计划项目(NWNU-LKQN-15-8)

Affecting Mechanism of Moisture Sources of Isotopes in Precipitation in the Tianshan Mountains Based on GCMs and Ice Core

YANG Sen1, ZHANG Ming-jun1, WANG Sheng-jie1,2   

  1. 1. College of Geography and Environment Science,Northwest Normal University,Lanzhou 730070,Gansu,China;
    2. State Key Laboratory of Cryospheric Sciences,Northwest Institute of Eco-Environment and Resources,Chinese Academy Sciences,Lanzhou 730000,Gansu,China
  • Received:2017-06-11 Revised:2017-07-22 Published:2018-03-15 Online:2025-11-17

摘要: 利用GISS-E(MERRA)、GISS-E(NCEP)、isoGSM(NCEP)、LMDZ(free)、LMDZ(ECMWF)和MIROC(free)6种GCM模型数据以及庙尔沟冰芯δ18O数据,对比分析了各模型和冰芯中δ18O的年际变化特征。并用6种模型数据分别与庙尔沟冰芯δ18O数据进行相关性分析,通过观察冰芯δ18O数据与距离冰芯最近模型数据的变化趋势,选出最适用于分析天山地区降水中δ18O的GCM模型,分析该模型中水汽的来源情况。结果表明:在年际尺度上GCM模拟的结果中存在“温度效应”,只是年际尺度上比年内尺度上的相关性略弱。MIRCO(free)模型模拟的倾向率变化与庙尔沟冰芯的倾向率变化一致(α=-0.01)。MIROC(free)模型的输出结果在天山地区最接近实测结果。水汽来源的方向与比例决定着降水中δ18O值偏正/偏负的程度。依据连续小波变换方法得出,在1990—2001年能量最强,1990—2001年降水中δ18O值虽然多次的波动偏正,但整体偏负。研究水汽来源轨迹发现,当降水中δ18O偏负时,主要是由来自北冰洋的水汽增多引起的,出现多次偏正波动时,主要是由于中纬度大西洋的水汽增加增多造成的。

关键词: GCMs, 冰芯, 水汽来源, 降水同位素, 庙尔沟, 天山山区

Abstract: The interannual variations of δ18O from the GCMs and ice core were studied according to the six simulations of several isotope-equipped general circulation models (GCMs) (including the GISS-E(MERRA),GISS-E(NCEP),isoGSM(NCEP),LMDZ(free),LMDZ(ECMWF) and MIROC(free)) and the data of δ18O from the Miaoergou ice core. By correlation analysis,the six simulations of isotope-enabled GCMs and the δ18O data from ice core were analyzed.Six simulations of isotope-enabled GCMs data and the ice core data were involved,and the monthly series of stable oxygen isotopes in precipitation for each grid were applied to calculate the linear trends.By observing the change trend of δ18O data from ice core and simulated data,the most suitable isotope-enabled general circulation model (GCM) was selected to analyze the data of δ18O in precipitation in the Tianshan Mountains,and the sources of water vapor in the most suitable model were further analyzed.The results showed that there was a “temperature effect” in the results simulated with GCMs on an interannual timescale.Generally,the correlation between oxygen isotope composition and surface air temperature on interannual timescale was lower than on seasonal timescale.The trend of MIROC(free) model was similar to that of the Miaoergou ice core (a=-0.01).MIROC(free) model was the most suitable model used to simulate the values of δ18O in precipitation in the Tianshan Mountains,and the result from the MIROC(free) model was similar to the measured one.The direction and proportion of water vapor sources determined the poverty or enrichment degree of δ18O in precipitation.Based on the continuous wavelet transform methods,the strongest energy occurred during the period from 1990 to 2001.Even though the values of δ18O in precipitation during the period from 1990 to 2001 presented many positive fluctuations,a significant decrease trend was characterized in general.After observing the vapor source trajectories,the increased water vapor from the Arctic Ocean resulted in a significant decrease trend of δ18O in precipitation,and the increased water vapor from the mid-latitude Atlantic caused many increasingly fluctuations of δ18O.

Key words: GCMs, ice core, water vapor source, stable water isotopes, Miaoergou, Tianshan Mountains