干旱对碧玉杨幼苗水氮利用与同化物分配的影响
收稿日期: 2021-11-12
修回日期: 2022-02-21
网络出版日期: 2022-05-30
基金资助
国家自然基金项目(31400527);山西省应用基础研究项目(201701D221190);山西农业大学青年拔尖人才支持计划(BJRC201602)
Response of drought on water and nitrogen utilization and carbohydrate distribution of Populus × euramericana ‘Biyu’ cuttings
Received date: 2021-11-12
Revised date: 2022-02-21
Online published: 2022-05-30
为进一步明确杨树对土壤干旱生理生态响应过程和树种间抗旱策略差异,以盆栽碧玉杨(Populus × euramericana ‘Biyu’)插条苗为试验材料,研究了持续2 a干旱胁迫下碧玉杨叶片光合特性、水氮利用与同化物分配的响应变化。结果表明:(1) 干旱下一年生碧玉杨幼苗的叶片变小变厚,气孔导度和蒸腾速率变化不大,净光合速率受到非气孔限制,从而使得瞬时水氮利用效率同时下降。(2) 二年生碧玉杨叶片更小更厚且碳氮比增大,而叶氮含量不变,有利于提高叶片抗旱性;干旱下净光合速率略有增加,瞬时水氮利用效率未降低,且中度干旱显著提高了碧玉杨的整株氮利用效率。(3) 连续2 a干旱处理下碧玉杨的生长大幅降低,向茎器官分配了更多的干物质和非结构性碳,导致根冠比降低,这可能不利于其根系水氮吸收和整株抗旱性。综上,干旱下碧玉杨幼苗虽然可通过叶片变小以降低蒸腾耗水,并维持较高的叶氮含量,但同时也降低了光合面积导致整株生长大幅降低,且根系同化物分配降低,初步表明碧玉杨抗旱性较差,不适宜在干旱半干旱地区大面积造林。
尚佳州,赵瑜琦,王卫锋,高钿惠,宗毓铮 . 干旱对碧玉杨幼苗水氮利用与同化物分配的影响[J]. 干旱区研究, 2022 , 39(3) : 893 -899 . DOI: 10.13866/j.azr.2022.03.22
The ecophysiological response of poplar to soil drought and drought resistance strategies among species remained unclear. In this study, Populus×euramericana ‘Biyu’ cuttings grown in pots were used as materials. Changes of leaf gas exchanges, water and nitrogen use traits, growth, and carbohydrate allocation among organs under 2-year drought were investigated. Results showed that the leaves of 1-year-old poplar cuttings became smaller but thicker under drought with stable stomatal conductance, and transpiration rate. The net photosynthesis rate decreased by non-stomatal inhibition, and the transient water and nitrogen use efficiency significantly decreased. In the second year, the leaves became even smaller and thicker with a higher carbon and nitrogen ratio. However, leaf nitrogen contents remained unchanged, which could improve leaf drought resistance. The net photosynthesis rate increased slightly, and transient water and nitrogen use efficiency remained stable. Moreover, moderate drought significantly increased whole-plant nitrogen use efficiency. Under a 2-year drought treatment, the growth significantly decreased. More biomass and non-structural carbohydrates allocated into the stem but not in the root system, and the root and shoot ratio became smaller, which are detrimental to the water and nitrogen uptake in the root and whole-plant drought resistance. Therefore, P.× euramericana ‘Biyu’cuttings can reduce water consumption in smaller but thicker leaves under drought, with high leaf nitrogen content, but this response could reduce the leaf area used for photosynthesis, resulting in decreased growth and smaller roots. These results indicated that P.×euramericana ‘Biyu’ has low drought resistance, which is not suitable for large-scale afforestation in arid and semi-arid areas.
[1] | 李玉山. 黄土高原森林植被对陆地水循环影响的研究[J]. 自然资源学报, 2001, 16(5): 427-432. |
[1] | [ Li Yushan. Effects of forest on water circle on the Loess Plateau[J]. Journal of Natural Resources, 2001, 16(5): 427-432.] |
[2] | 田均良. 黄土高原土壤干燥化问题探源[J]. 土壤学报, 2004, 41(1): 1-6. |
[2] | [ Tian Junliang. Essential exploration of soil aridization in Loess Plateau[J]. Acta Pedologica Sinica, 2004, 41(1): 1-6. ] |
[3] | 吕文, 张卫东, 包军. 论发展杨树与三北防护林体系建设[J]. 防护林科技, 2000(2): 68-70. |
[3] | [ Lyu Wen, Zhang Weidong, Bao Jun. Discussion on developing of poplar and construction of Three Norths Protection Forest Project[J]. Protection Forest Science and Technology, 2000(2): 68-70. ] |
[4] | Burkett V R, Suarez A G, Bindi M, et al. Climate Change 2014:Impacts, Adaptation, and Vulnerability[M]. Cambridge: Cambridge University Press, 2015: 151-206. |
[5] | 尹春英, 李春阳. 杨树抗旱性研究进展[J]. 应用与环境生物学报, 2003, 9(6): 662-668. |
[5] | [ Yin Chunying, Li Chunyang. Advance in research on drought resistance of Populus[J]. Chinese Journal of Appled & Environmental Biology, 2003, 9(6): 662-668. ] |
[6] | Meng S, Zhang C, Li S, et al. Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress[J]. Environmental & Experimental Botany, 2016, 123: 78-87. |
[7] | Parker J. Drought resistance in woody plants[J]. Botanical Review, 1956, 22(4): 241-289. |
[8] | Wiley E, Huepenbecker S, Casper B B, et al. The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage?[J]. Tree Physiology, 2013, 33(11): 1216-1228. |
[9] | Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30-50. |
[10] | 吕爽. 胡杨幼苗地上地下生长特性对水土条件的响应[D]. 北京: 北京林业大学, 2015. |
[10] | [ Lyu Shuang. The Effects of Water and Soil Environment on the Growth of Populus euphratica Seedlings[D]. Beijing: Beijing Forestry University, 2015. ] |
[11] | 陈佳村, 李秧秧, 左力翔. 陕北沙地小叶杨“小老树”的水力适应性[J]. 生态学报, 2014, 34(15): 4193-4200. |
[11] | [ Chen Jiacun, Li Yangyang, Zuo Lixiang. The hydraulic acclimation of old and dwarf Populus simonii trees growing on sandy soil in northern Shaanxi Province, China[J]. Acta Ecologica Sinica, 2014, 34(15): 4193-4200. ] |
[12] | Garavillon-Tournayre M, Gousset-Dupont A, Gautier F, et al. Integrated drought responses of black poplar: How important is phenotypic plasticity?[J]. Physiologia Plantarum, 2018, 163(1): 30-44. |
[13] | Viger M, Smith H K, Cohen D, et al. Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.)[J]. Tree Physiology, 2016, 36(7): 909-928. |
[14] | 赵瑜琦, 高苗琴, 李涛, 等. 干旱胁迫对群众杨光合特性与器官干物质分配的影响[J]. 生态学报, 2020, 40(5): 1683-1689. |
[14] | [ Zhao Yuqi, Gao Miaoqin, Li Tao, et al. Effects of drought stress on the leaf gas exchanges and organ dry matter distribution of Populus × popularis ‘35-44’ cuttings[J]. Acta Ecologica Sinica, 2020, 40(5): 1683-1689. ] |
[15] | 高钿惠, 尚佳州, 宋立婷, 等. 小叶杨叶片光合特性与解剖结构对干旱及复水的响应[J]. 中国水土保持科学, 2021, 19(6): 18-26. |
[15] | [ Gao Tianhui, Shang Jiazhou, Song Liting, et al. Responses of leaf photosynthetic and anatomical characteristics in Populus simonii cuttings to drought and re-watering[J]. Science of Soil and Water Conservation, 2021, 19(6): 18-26. ] |
[16] | Sala A, Woodruff D R, Meinzer F C. Carbon dynamics in trees: Feast or famine?[J]. Tree Physiology, 2012, 32(6): 764-775. |
[17] | Klein T, Zeppel M J B, Anderegg W R L, et al. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: Processes and trade-offs[J]. Ecological Research, 2018, 33(5): 839-855. |
[18] | 李爱平, 苏晓华, 王晓江, 等. 欧美杨新品种在内蒙古中西部的引种试验[J]. 东北林业大学学报, 2015, 43(1): 5-8. |
[18] | [ Li Aiping, Su Xiaohua, Wang Xiaojiang, et al. Introduction trial of new varieties of Populus × euramericanacn in Inner Mongolian[J]. Journal of Northeast Forestry University, 2015, 43(1): 5-8. ] |
[19] | 陈金龙. 干旱区碧玉杨地膜覆盖扦插育苗生长观测及苗期管理研究[J]. 林业科技, 2018, 43(4): 9-11. |
[19] | [ Chen Jinlong. Growth observation and seedling management of Populus sp. poplar covered with plastic film in arid region[J]. Forestry Science & Technology, 2018, 43(4): 9-11. ] |
[20] | 王怡霖, 王卫锋, 张芸香, 等. 碧玉杨叶形态结构与生理特性对干旱的响应[J]. 林业科学, 2019, 55(4): 45-53. |
[20] | [ Wang Yilin, Wang Weifeng, Zhang Yunxiang, et al. Responses of leaf morphological structure and physiological characteristics of Populus euramericana cv. ‘BYu’ to drought stress[J]. Forestry Science, 2019, 55(4): 45-53. ] |
[21] | Dong T, Duan B, Zhang S, et al. Growth, biomass allocation and photosynthetic responses are related to intensity of root severance and soil moisture conditions in the plantation tree Cunninghamia lanceolata[J]. Tree Physiology, 2016, 36(7): 807-817. |
[22] | Landhäusser S M, Chow P S, Dickman L T, et al. Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates[J]. Tree Physiology, 2018, 38(12):1764-1778. |
[23] | Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 317-345. |
[24] | Warren C R, Adams M A. Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis[J]. Plant, Cell & Environment, 2006, 29(2): 192-201. |
[25] | Liang G, Bu J, Zhang S, et al. Effects of drought stress on the photosynthetic physiological parameters of Populus × euramericana ‘Neva’[J]. Journal of Forestry Research, 2019, 30(2): 409-416. |
[26] | Field C, Merino J, Mooney H A. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens[J]. Oecologia, 1983, 60(3): 384-389. |
[27] | 邓秀秀, 肖文发, 曾立雄, 等. 马尾松幼苗光合产物的运输与分配特征[J]. 林业科学, 2019, 55(7): 27-34. |
[27] | [ Deng Xiuxiu, Xiao Wenfa, Zeng Lixiong, et al. Transport and distribution characteristics of photosynthates of Pinus massoniana seedlings[J]. Scientia Silvae Sinicae, 2019, 55(7): 27-34. ] |
[28] | Lu Y W, Miao X L, Song Q Y, et al. Morphological and ecophysiological plasticity in dioecious plant Populus tomentosa under drought and alkaline stresses[J]. Photosynthetica, 2018, 56(4): 1353-1364. |
[29] | Janssen T A J, Hölttä T, Fleischer K, et al. Wood allocation trade-offs between fiber wall, fiber lumen and axial parenchyma drive drought resistance in neotropical trees[J]. Plant, Cell & Environment, 2020, 43(4): 965-980. |
[30] | Hesse B D, Goisser M, Hartmann H, et al. Repeated summer drought delays sugar export from the leaf and impairs phloem transport in mature beech[J]. Tree Physiology, 2018, 39: 192-200. |
[31] | Brodersen C R, Roddy A B, Wason J W, et al. Functional status of xylem through time[J]. Annual Review of Plant Biology, 2019, 70(1): 407-433. |
[32] | Zwieniecki M A, Holbrook N M. Confronting Maxwell’s demon: Biophysics of xylem embolism repair[J]. Trends in Plant Science, 2009, 14(10): 530-534. |
/
〈 | 〉 |