植物与植物生理

准噶尔盆地大赖草分布格局及关键因子分析

展开
  • 1.石河子大学理学院,兵团绿洲城镇与山盆生态系统重点实验室,干旱区景观生态重点实验室,新疆 石河子 832000
    2.新疆维吾尔自治区草原总站,新疆 乌鲁木齐 830049
    3.石河子大学生命科学学院,兵团绿洲城镇与山盆生态系统重点实验室,新疆 石河子 832000
张林(1997-),女,硕士研究生,主要从事地理信息系统、植物地理研究. E-mail: zhanglin9712@163.com

收稿日期: 2021-09-09

  修回日期: 2022-01-05

  网络出版日期: 2022-05-30

基金资助

国家自然科学基金项目(41561007);国家自然科学基金项目(41261011);草原生态修复治理补助项目(XJCYZZ202007)

Distribution pattern and driving mechanisms of the sand plant Leymus racemosus in the Junggar Basin

Expand
  • 1. College of Science, Shihezi University, Corps Key Laboratory of Oasis Towns and Mountain Basin Ecosystems, Key Laboratory of Landscape Ecology in Arid Region, Shihezi 832000, Xinjiang, China
    2. General Grassland Station of Xinjiang, Urumqi 830049, Xinjiang, China
    3. College of Life Sciences, Shihezi University, Corps Key Laboratory of Oasis Towns and Mountain Basin Ecosystems, Shihezi 832000, Xinjiang, China

Received date: 2021-09-09

  Revised date: 2022-01-05

  Online published: 2022-05-30

摘要

模拟、预测新疆准噶尔盆地沙丘禾草大赖草的生态适宜性及其空间分布特征,以及对未来气候变化的可能响应,指导该濒危植物的保护。研究基于大赖草的24个自然分布点和8个环境因子,利用GIS空间分析和MaxEnt模型,分析基准气候(1970—2000年)和社会经济路径SSP2下2050时段(2041—2060年)和2070时段(2081—2100年)大赖草的适宜分布范围及分布格局变化,并利用多元环境相似度面和最不相似变量探究影响大赖草分布的关键气候因子。结果表明:(1) 基准气候下,大赖草的适宜分布面积占新疆总面积的5.57%,主要集中于额尔齐斯河流域附近的低覆盖度草地;(2) 与基准气候相比,2050时段和2070时段大赖草的适生区呈显著减少趋势,占比分别为0.99%和1.33%,适宜生境高度破碎化,适生区的质心向西北方高纬度和高海拔地区迁移;(3) 最干月降水量、降水量季节性变化和温度季节性变化是影响准噶尔盆地大赖草适宜分布的关键气候因子。

本文引用格式

张林,张云玲,马松梅,张丹,贺凌云 . 准噶尔盆地大赖草分布格局及关键因子分析[J]. 干旱区研究, 2022 , 39(3) : 863 -871 . DOI: 10.13866/j.azr.2022.03.19

Abstract

Our objective was to simulate and predict ecological suitability, possible suitable distribution range, spatial distribution characteristics, and possible response to future climate change of Leymus racemosus (Lam.) Tzvelev in Xinjiang. The data in this study were based on 24 natural distribution sites and eight environmental factors of Leymus racemosus and were analyzed using GIS spatial analysis and the MaxEnt model. The suitable distribution range and changes in the distribution pattern of Leymus racemosus in Xinjiang under the present climate (1970-2000), the 2050 period (2041-2060), and the 2070 period (2081-2100) for the “Middle of the Road” narrative (SSP2) of the shared socioeconomic pathways were analyzed. We used multivariate environmental similarity surface analysis and the most dissimilar variable to explore the key climatic factors. Under the present climate, the suitable distribution area of Leymus racemosus accounts for 5.57% of the total area of Xinjiang, mainly concentrated in the low-cover grasslands near the Irtysh River. Compared with the present climate, the suitable habitat of Leymus racemosus will be significantly reduced by 0.99% and 1.33% in 2050 and 2070, respectively; its suitable habitat will be highly fragmented, and the center of its suitable habitat will move to the Northwest at higher latitudes and higher elevations. Factors that mainly influence the suitable distribution of Leymus racemosus in Xinjiang are the precipitation of the driest month, precipitation seasonality (Cv), and the standard deviation of seasonal temperature variation.

参考文献

[1] Warren R, Price J, Graham E, et al. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 ℃ rather than 2 ℃[J]. Science, 2018, 360(6390): 791-795.
[2] Li X, Tian H, Yuan W, et al. Vulnerability of 208 endemic or endangered species in China to the effects of climate change[J]. Regional Environmental Change, 2013, 13(4): 843-852.
[3] Zhao Y F, Pan B R, Zhang M L. Phylogeography and conservation genetics of the endangered Tugarinovia mongolica (Asteraceae) from Inner Mongolia, Northwest China[J]. Plos One, 2019, 14(2): e0211696.
[4] 中国植物志编委. 中国植物志[M]. 北京: 科学出版社, 1987: 16.
[4] [ Editorial Board of the Flora of China. Flora of China[M]. Beijing: Science Press, 1987: 16. ]
[5] 中国饲用植物志编辑委员会. 中国饲用植物志[M]. 北京: 农业出版社, 1992: 45-47.
[5] [ Editorial Committee of The Forage Flora of China. Forage Plants of China[M]. Beijing: Agriculture Press, 1992: 45-47. ]
[6] 潘伯荣, 尹林克, 王烨. 三种沙漠牧草的引种比较[J]. 干旱区研究, 1991, 8(2): 8-11.
[6] [ Pan Borong, Yin Linke, Wang Ye. The adventitious culture of rare endangered plants in Termperate Desert[J]. Arid Zone Research, 1991, 8(2): 8-11. ]
[7] Ukpong E O, June-Sik K, Masanori O, et al. Efficient anchoring of alien chromosome segments introgressed into bread wheat by new Leymus racemosus genome-based markers[J]. BMC Genetics, 2018, 19(1): 18.
[8] 蔡小霞, 吾买尔夏提·塔汉, 代培红, 等. 大赖草种群遗传多样性的AFLP分析[J]. 干旱区资源与环境, 2017, 31(9): 130-134.
[8] [ Cai Xiaoxia, Wumaierxiati Tahan, Dai Peihong, et al. AFLP analysis on genetic diversity of Leymus racemosus in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2017, 31(9): 130-134. ]
[9] 黄振英, 吴鸿. 30种新疆沙生植物的结构及其对沙漠环境的适应[J]. 植物生态学报, 1997, 21(6): 521-530.
[9] [ Huang Zhenying, Wu Hong. The structures of 30 species of psammophytes and their adaptation to the sandy desert environment in Xinjiang[J]. Acta Phytoecologica Sinica, 1997, 21(6): 521-530. ]
[10] 尹林克, 谭丽霞, 王兵. 新疆珍稀濒危特有高等植物[M]. 乌鲁木齐: 新疆科学技术出版社, 2006: 134-135.
[10] [ Yin Linke, Tan Lixia, Wang Bing. Rare Endangered Endemic Higger Plants in Xinjiang of China[M]. Urumqi: Xinjiang Science and Technology Press, 2006: 134-135. ]
[11] 杨瑞武, 周永红, 郑有良, 等. 赖草属三个八倍体和两个十二倍体物种的核型研究[J]. 草业学报, 2004, 13(2): 99-105.
[11] [ Yang Ruiwu, Zhou Yonghong, Zheng Youliang, et al. Leymus karyotypes of three octoploid and two dodecaploid species[J]. Acta Pratacu Lturae Sinica, 2004, 13(2): 99-105. ]
[12] 刘宇, 周桂玲. 大赖草的交配系统及生殖对策[J]. 中国沙漠, 2010, 20(1): 92-96.
[12] [ Liu Yu, Zhou Guiling. Mating system and reproductive strategy of Leymus racemosus[J]. Journal of Desert Research, 2010, 30(1): 92-96. ]
[13] 古丽娜儿·阿不来提, 周桂玲, 王轶, 等. 不同贮藏条件对大赖草种子萌发的影响[J]. 干旱区研究, 2014, 31(3): 502-507.
[13] [ Gulnar Ablat, Zhou Guiling, Wang Yi, et al. Effects of different storage conditions on germination of Leymus racemosus seeds[J]. Arid Zone Research, 2014, 31(3): 502-507. ]
[14] 王超, 迪利夏提·哈斯木, 周桂玲. 不同环境因素对大赖草种子萌发的影响[J]. 新疆农业大学学报, 2011, 34(6): 469-473.
[14] [ Wang Chao, Dilixiati Hasimu, Zhou Guiling. Effects of different environmental factors on the seed germination of Leymus racemosus[J]. Journal of Xinjiang Agricultural University, 2011, 34(6): 469-473. ]
[15] Guo Y, Wei H, Lu C, et al. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change[J]. PeerJ, 2016, 4(10): e2554.
[16] Kumar S, Stohlgren T J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia[J]. Journal of ecology & the natural environment, 2009, 1(4): 94-98.
[17] 钱亦兵, 吴兆宁, 张立运, 等. 古尔班通古特沙漠植被与环境的关系[J]. 生态学报, 2007, 27(7): 2802-2811.
[17] [ Qian Yibing, Wu Zhaoning, Zhang Liyun, et al. Vegetation-environment relationships in Gurbantunggut Desert[J]. Acta Ecologica Sinica, 2007, 27(7): 2802-2811. ]
[18] 傅伯杰, 刘国华, 孟庆华. 中国西部生态区划及其区域发展对策[J]. 干旱区地理, 2000, 23(4): 289-297.
[18] [ Fu Bojie, Liu Guohua, Meng Qinghua, et al. Eco-regionalization of West China its regional development countermeasures[J]. Arid Land Geography, 2000, 23(4): 289-297. ]
[19] 许鹏. 新疆北疆平原荒漠生态特征、问题与对策[J]. 草叶学报, 1997, 6(4): 6-10.
[19] [ Xu Peng. Ecological characteristics, problems and developmental strategy of plain desert in northern Xinjiang[J]. Acta Prataculturae Sinica, 1997, 6(4): 6-10. ]
[20] 薛晓东, 吾买尔夏提·塔汉, 代培红, 等. 新疆阿勒泰地区5个大赖草种群的表型多样性分析[J]. 植物资源与环境学报, 2016, 25(2): 85-91.
[20] [ Xue Xiaodong, Wumaierxiati Tahan, Dai Peihong, et al. Analysis on phenotypic diversity of five populations of Leymus racemosus in Altai Region of Xinjiang[J]. Journal of Plant Resources and Environment, 2016, 25(2): 85-91. ]
[21] 古丽娜儿·阿不来提, 周桂玲, 阿依吐尔汗·热依木. 大赖草(Leymus racemosus)结实格局[J]. 中国沙漠, 2014, 34(4): 1037-1041.
[21] [ Gulnar Ablat, Zhou Guiling, Ayturhan Rayim. Fruit-set patterns of Leymus racemosus[J]. Journal of Desert Research, 2014, 34(4): 1037-1041. ]
[22] 张文秀, 寇一翾, 张丽, 等. 采用生态位模拟预测濒危植物白豆杉5个时期的适宜分布区[J]. 生态学杂志, 2020, 39(2): 600-613.
[22] [ Zhang Wenxiu, Kou Yixuan, Zhang Li, et al. Suitable distribution of endangered species Pseudotaxus chienii (Cheng) Cheng(Taxaceae) in five periods using niche modeling[J]. Chinese Journal of Ecology, 2020, 39(2): 600-613. ]
[23] Parolo G, Rossi G, Ferrarini A. Toward improved species niche modelling: Arnica montana in the Alps as a case study[J]. Journal of Applied Ecology, 2008, 45(5): 1410-1418.
[24] 塞依丁·海米提, 努尔巴依·阿布都沙力克, 李雪萍, 等. 气候变化及人类活动对蒙古沙拐枣分布格局的影响[J]. 干旱区研究, 2018, 35(6): 1450-1459.
[24] [ Sayit Hamit, Nurbay Abdushalih, Li Xueping, et al. Effects of climate change and human activities on the distribution pattern of Calligonum mongolicum Turcz.[J]. Arid Zone Research, 2018, 35(6): 1450-1459. ]
[25] 张兴旺, 李垚, 谢艳萍, 等. 气候变化对黄山花楸潜在地理分布的影响[J]. 植物资源与环境学报, 2018, 27(4): 31-41.
[25] [ Zhang Xingwang, Li Yao, Xie Yanping, et al. Effect of climate change on potential geographical distribution of Sorbus amabilis[J]. Journal of Plant Resources and Environment, 2018, 27(4): 31-41. ]
[26] Elith J, Kearney M, Phillips S. The art of modelling range-shifting species[J]. Methods in Ecology & Evolution, 2010, 1(4): 330-342.
[27] 张丹, 刘凯军, 马松梅, 等. 高山植物天山花楸的适宜分布及其环境驱动因子研究[J]. 生态学报, 2022, 42(2): 1-10.
[27] [ Zhang Da, Liu Kaijun, Ma Songmei, et al. The suitable distrbution of alpine plant Sorbus tianschanicn and its environmental driving factors[J]. Acta Ecologica Sinica, 2022, 42(2): 1-10. ]
[28] Rosenzweig C, Karoly D, VicarelliI M, et al. Attributing physical and biological impacts to anthropogenic climate change[J]. Nature, 2008, 453(7193): 353-357.
[29] Zhang X W, Li Y, Xie Y P, et al. Effect of climate change on potential geographical distribution of Sorbus amabilis[J]. Journal of Plant Resources and Environment, 2018, 27(4): 31-41.
[30] Root T L, Price J T, Hall K R, et al. Fingerprints of global warming on wild animals and plants[J]. Nature, 2003, 421(6918): 57-60.
[31] 刘引鸽. 西北干旱灾害影响因子分析[J]. 灾害学, 2003, 18(2): 18-22.
[31] [ Liu Yinge. Analysis on the influencing factors of drought disaster in Northwest China[J]. Journal of Catastrophology, 2003, 18(2): 18-22. ]
[32] 《气候变化国家评估报告》编写委员会. 气候变化国家评估报告[M]. 北京: 科学出版社, 2007.
[32] [ Editorial Committee of National Assessment Report on Climate Change. National Assessment Report on Climate Change[M]. Beijing: Science Press, 2007. ]
[33] 朱耿平, 刘国卿, 卜文俊, 等. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1): 90-98.
[33] [ Zhu Gengping, Liu Guoqing, Bu Wenjun, et al. Ecological niche modeling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1): 90-98. ]
文章导航

/