节水改造前后永济灌域地下水环境时空变化特征
收稿日期: 2021-09-03
修回日期: 2021-12-14
网络出版日期: 2022-05-30
基金资助
十四五重点研发计划(2021YFC3201202);国家自然科学基金项目(51539005);国家自然科学基金项目(51969024);国家自然科学基金项目(51669020);内蒙古自治区水利厅重大项目(NSK2017-M1);内蒙古自治区科技厅重大专项(zdzx2018059)
Temporal and spatial variation change of groundwater environment in the salinized irrigation districts under the background of water-saving reconstruction
Received date: 2021-09-03
Revised date: 2021-12-14
Online published: 2022-05-30
地下水是我国西北干旱半干旱区的重要资源,而大规模的节水改造工程势必造成地下水环境的变化。本文从时空概率分布角度,探索了河套灌区永济灌域节水改造前(1998—2000年)、初期(2001—2006年)、中期(2007—2012年)和后期(2013—2018年)地下水埋深和地下水矿化度的时空变化特征,并运用指示Kriging法分析了节水改造前后不同阈值条件下地下水埋深和矿化度的空间概率分布规律。结果表明:(1) 随着节水改造工程的推进,地下水埋深和矿化度均呈增加趋势,节水改造后期(2013—2018年)较节水改造前(1998—2000年)平均埋深增加了0.36 m,矿化度增加了1.37 g·L-1。(2) 空间尺度上,节水改造后期33%的浅埋地下水(地下水埋深<2.0 m)高概率区(发生概率在0.5以上)过渡为深埋地下水的高概率区,且受城镇化影响(开采利用量大),中南部和北部地下水埋深增加显著;矿化度<2.5 g·L-1和≥3.0 g·L-1的高概率区分别扩大了17%和4%,即研究区中南部地下水趋于淡化,北部及东西边缘部趋于矿化。(3) 21 a年均深埋地下水(地下水埋深≥2.0 m)高概率区占总面积的39%,主要集中于中南部地区;矿化度<2.5 g·L-1的高概率区面积占67%,≥3.0 g·L-1的高概率区面积占比27%且集中分布于北部地区。节水改造增加了地下水埋深(有效降低了地下水位),虽矿化度呈增加趋势,但矿化地区多集中于各排干附近,建议进一步完善排水系统。
崔佳琪,李仙岳,史海滨,孙亚楠,马红雨,菅文浩 . 节水改造前后永济灌域地下水环境时空变化特征[J]. 干旱区研究, 2022 , 39(3) : 841 -852 . DOI: 10.13866/j.azr.2022.03.17
Groundwater is an important resource in the arid region of Northwest China, and large-scale water-saving transformation projects are bound to cause changes in the groundwater environment. On the basis of the spatial-temporal probability distribution, the spatial-temporal variations of groundwater depth and salinity were explored in the Yongji irrigation area of the Hetao Irrigation District before the Agricultural Water-saving Transformation Project (AWSTP) (1998-2000), at the initial stage (2001-2006), the middle stage (2007-2012), and the late stage (2013-2018). The Kriging method was used to analyze the probability distribution of groundwater depth and salinity under different threshold conditions before and after the AWSTP. The results show that as the AWSTP advanced, both the buried depth of groundwater and groundwater salinity increased. In the late stage of the AWSTP (2013-2018), the average buried depth of groundwater increased by 0.36 m, and groundwater salinity increased by 1.37 g·L-1 compared with preproject measures (1998-2000). On a spatial scale, 33% of the high-probability area of shallow groundwater (i.e., groundwater depth less than 2.0 m; probability of occurrence above 0.5) transitioned to the high-probability area of deep groundwater (i.e., groundwater depth greater than or equal to 2.0 m). Shallow groundwater has been affected by urbanization (with a large amount of groundwater exploitation), and groundwater depth has increased significantly in the central, southern, and northern parts of the area. The high-probability areas of groundwater salinity less than 2.5 g·L-1 and greater than or equal to 3.0 g·L-1 have expanded by 17% and 4%, respectively. In other words, the south-central part of the study area tended to desalinate, whereas the northern and eastern edges tended to mineralize. The 21 year average deep groundwater (i.e., groundwater depth greater than or equal to 2.0 m) with high-probability areas accounted for 39% of the total area and is mainly concentrated in the south-central area. The high-probability areas with salinity less than 2.5 g·L-1 accounted for 67% on average, and the high-probability areas with salinity greater than or equal to 3.0 g·L-1 were concentrated in the northern region and accounted for 27% of the total area. The AWSTP has resulted in an increase in groundwater depth (i.e., effectively reduced the groundwater level). Although groundwater salinity is increasing, the mineralized areas are mostly concentrated near the drains. Further improvements to the drainage system are recommended.
[1] | 於昊天, 马腾, 邓娅敏, 等. 江汉平原东部地区浅层地下水水化学特征[J]. 地球科学, 2017, 42(5): 685-692. |
[1] | [ Yu Haotian, Ma Teng, Deng Yamin, et al. Hydrochemical characteristics of shallow groundwater in eastern Jianghan plain[J]. Earth Science, 2017, 42(5): 685-692. ] |
[2] | 艾力哈木·艾克拉木, 周金龙, 张杰, 等. 伊犁河谷西北部地下水化学特征及成因分析[J]. 干旱区研究, 2021, 38(2): 504-512. |
[2] | [ Ailihamu Aikelamu, Zhou Jinlong, Zhang Jie, et al. Difference and consistency of responses of five sandy shrubs to changes in groundwater level in the Hailiutu River Basin[J]. Arid Zone Research, 2021, 38(2): 504-512. ] |
[3] | 卢龙辉, 瓦哈甫·哈力克, 彭菲, 等. 新疆克里雅绿洲地下水与表层土壤特征的最优插值[J]. 干旱区研究, 2017, 34(6): 1304-1312. |
[3] | [ Lu Longhui, Wahap Halik, Peng Fei, et al. Optimal interpolation methods for characteristics of shallow groundwater and topsoil in the Keriya oasis, Xinjiang[J]. Arid Zone Research, 2017, 34(6): 1304-1312. ] |
[4] | Ibrahimi M K, Miyazaki T, Nishimura T, et al. Contribution of shallow groundwater rapid fluctuation to soil salinization under arid and semiarid climate[J]. Arabian Journal of Geosciences, 2014, 7: 3901-3911. |
[5] | 吐尔逊·艾山, 塔西甫拉提·特依拜, 买买提·阿扎提, 等. 渭干河灌区地下水埋深与矿化度时空分布动态[J]. 地理科学, 2011, 31(9): 1131-1137. |
[5] | [ Tursun Hasan, Tashoplat Tiyip, Mamat Gazat, et al. Spatial and temporal dynamic distribution of groundwater depth and mineralization in Weigan river irrigation district[J]. Scientia Geographica Sinica, 2011, 31(9): 1131-1137. ] |
[6] | 孟建, 姚旭擎, 杨晓琳, 等. 地下水超采区农业种植结构与作物耗水时空演变研究[J]. 农业机械学报, 2020, 51(11): 302-312. |
[6] | [ Meng Jian, Yao Xuqing, Yang Xiaolin, et al. Spatial and temporal evolution of agricultural planting structure and crop water consumption in groundwater overdraft area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 302-312. ] |
[7] | Wang J Z, Wu J L, Jia H J. Analysis of spatial variation of soil salinization using a hydrochemical and stable isotopic method in a semiarid irrigated basin, Hetao plain, Inner Mongolia, North China[J]. Environmental Processes, 2016, 3: 723-733. |
[8] | 夏江宝, 赵西梅, 赵自国, 等. 不同潜水埋深下土壤水盐运移特征及其交互效应[J]. 农业工程学报, 2015, 31(15): 93-100. |
[8] | [ Xia Jiangbao, Zhao Ximei, Zhao Ziguo, et al. Migration characteristics of soil water and salt and their interaction under different groundwater levels[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 93-100. ] |
[9] | 郭姝姝. 基于遥感及CLUE-S模型的内蒙古河套灌区土壤盐渍化时空演变与调控研究[D]. 北京: 中国水利水电科学研究院, 2018. |
[9] | [ Guo Shushu. Study on Spatiotemporal Evolution and Regulation of Soil Salinization in Hetao Irrigation District, Inner Mongolia, China Using Remote Sensing and CLUE-S Model[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2018. ] |
[10] | 刘丽娟, 李小玉. 干旱区土壤盐分积累过程研究进展[J]. 生态学杂志, 2019, 38(3): 891-898. |
[10] | [ Liu Lijuan, Li Xiaoyu. Progress in the study of soil salt accumulation in arid region[J]. Chinese Journal of Ecology, 2019, 38(3): 891-898. ] |
[11] | 周利颖, 李瑞平, 苗庆丰, 等. 内蒙古河套灌区紧邻排干沟土壤盐渍化与肥力特征分析[J]. 干旱区研究, 2021, 38(1): 114-122. |
[11] | [ Zhou Liying, Li Ruiping, Miao Qingfeng, et al. Characteristics of salinization and fertility of saline-alkali soil adjacent to drainage ditch in Hetao Irrigation Area of Inner Mongolia[J]. Arid Zone Research, 2021, 38(1): 114-122. ] |
[12] | 王刚. 乌梁素海生态需水及补水策略研究[D]. 郑州: 华北水利水电学院, 2012. |
[12] | [ Wang Gang. Study on Ecological Water Demand and Water Replenishment Strategy in Wuliangsuhai[D]. Zhengzhou: North China Institute of Water Resources and Hydropower, 2012. ] |
[13] | 杜军, 杨培玲, 李云开, 等. 河套灌区年内地下水埋深与矿化度的时空变化[J]. 农业工程学报, 2010, 26(7): 26-31. |
[13] | [ Du Jun, Yang Peiling, Li Yunkai, et al. Analysis of spatial and temporal variations of groundwater level and its salinity in Hetao irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7): 26-31. ] |
[14] | 蔡守华, 徐英, 王俊生, 等. 土壤水分和养分时空变异性与作物产量的关系[J]. 农业工程学报, 2009, 25(12): 26-31. |
[14] | [ Cai Shouhua, Xu Ying, Wang Junsheng, et al. Relationship between spatio-temporal variability of soil moisture and nutrients and crop yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(12): 26-31. ] |
[15] | 吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析及环境风险评价[J]. 地理学报, 2012, 67(7): 971-984. |
[15] | [ Lyu Jianshu, Zhang Zulu, Liu Yang, et al. Sources identification and hazardous risk delineation of heavy metals contamination in Rizhao City[J]. Acta Geographica Sinica, 2012, 67(7): 971-984. ] |
[16] | 杨奇勇, 杨劲松, 余世鹏. 禹城市耕地土壤盐分与有机质的指示克里格分析[J]. 生态学报, 2011, 31(8): 2196-2202. |
[16] | [ Yang Qiyong, Yang Jinsong, Yu Shipeng. Evaluation on spatial distribution of soil salinity and soil organic matter by indicator Kriging in Yucheng City[J]. Acta Ecologica Sinica, 2011, 31(8): 2196-2202. ] |
[17] | Castrignanó A, Buttafuoco G, Giasi C. Assessment of Groundwater Salinisation Risk Using Multivariate Geostatics[D]. Soares A: Geostatistics for Environmental Applications, 2008, 15: 191-202. |
[18] | Ducci D, De Melo M T C, Preziosi E, et al. Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management[J]. Science of the Total Environment, 2016, 569: 569-570. |
[19] | Demir Y, Ersahin S, Güler M, et al. Spatial variability of depth and salinity of groundwater under irrigated usti-fluvents in the Middle Black Sea Region of Turkey[J]. Environmental Monitoring and Assessment, 2009, 158: 279-294. |
[20] | 马金慧, 杨树青, 张武军, 等. 河套灌区节水改造对地下水环境的影响[J]. 人民黄河, 2011, 33(1): 68-69. |
[20] | [ Ma Jinhui, Yang Shuqing, Zhang Wujun, et al. The influence of water saving transformation on groundwater environment in Hetao Irrigation District[J]. Yellow River, 2011, 33(1): 68-69. ] |
[21] | 孙亚楠, 李仙岳, 史海滨, 等. 基于多源数据融合的盐分遥感反演与季节差异性研究[J]. 农业机械学报, 2020, 51(6): 169-180. |
[21] | [ Sun Yanan, Li Xianyue, Shi Haibin, et al. Remote sensing inversion of soil salinity and seasonal difference analysis based on multi-source data fusion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 169-180. ] |
[22] | Journel A G. Non-parametric estimation of spatial distribution[J]. Journal of Mathematical Geology, 1983, 15(3): 445-468. |
[23] | 梅杨, 张文婷, 杨勇, 等. 基于时空指示克里格的PM2. 5不确定性分布[J]. 中国环境科学, 2018, 38(1): 35-43. |
[23] | [ Mei Yang, Zhang Wenting, Yangyong, et al. Uncertainty assessment of PM2. 5 probability mapping by using spatio-temporal indicator Kriging[J]. China Environmental Science, 2018, 38(1): 35-43. ] |
[24] | 管孝艳, 王少丽, 高占义, 等. 盐渍化灌区土壤盐分的时空变异特征及其与地下水埋深的关系[J]. 生态学报, 2012, 32(4): 1202-1210. |
[24] | [ Guan Xiaoyan, Wang Shaoli, Gao Zhanyi, et al. Spatiotemporal variability of soil salinity and its relationship with the depth to groundwater in salinization irrigation district[J]. Acta Ecologica Sinica, 2012, 32(4): 1202-1210. ] |
[25] | 李海学, 程旭学, 李林阳, 等. 宁夏海原盆地地下水淡水-微咸水分布规律[J]. 干旱区资源与环境, 2019, 33(4): 182-188. |
[25] | [ Li Haixue, Cheng Xuxue, Li Linyang, et al. Distribution law of ground freshwater-brackishwater in the Haiyuan basin, Ningxia[J]. Journal of Arid Land Resources and Environment, 2019, 33(4): 182-188. ] |
[26] | 李伟. 河套灌区解放闸灌域土壤盐渍化影响因素及防治措施研究[D]. 扬州: 扬州大学, 2018. |
[26] | [ Li Wei. Study on Influencing Factors and Prevention Measures of Soil Salinization in Jiefangzha Irrigation Field of the Hetao Irrigation District[D]. Yangzhou: Yangzhou University, 2018. ] |
[27] | 杨树青, 叶志刚, 史海滨, 等. 内蒙河套灌区咸淡水交替灌溉模拟及预测[J]. 农业工程学报, 2010, 26(8): 8-17. |
[27] | [ Yang Shuqing, Ye Zhigang, Shi Haibin, et al. Simulation and prediction of rotational irrigation with salty and flesh water in the Hetao irrigation area of Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 8-17. ] |
[28] | 徐英, 葛洲, 王娟, 等. 基于指示Kriging法的土壤盐渍化与地下水埋深关系研究[J]. 农业工程学报, 2019, 35(1): 123-130. |
[28] | [ Xu Ying, Ge Zhou, Wang Juan, et al. Study on relationship between soil salinization and groundwater table depth based on indicator Kriging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 123-130. ] |
[29] | 周在明, 张光辉, 王金哲, 等. 环渤海低平原区土壤盐渍化风险的多元指示克立格评价[J]. 水利学报, 2011, 42(10): 1144-1151. |
[29] | [ Zhou Zaiming, Zhang Guanghui, Wang Jinzhe, et al. Multiple indicators of soil salinization risk in the low plain area of the Bohai Sea[J]. Journal of Hydraulic Engineering, 2011, 42(10): 1144-1151. ] |
[30] | 张源沛, 胡克林, 李保国, 等. 银川平原土壤盐分及盐渍土的空间分布格局[J]. 农业工程学报, 2009, 25(7): 19-24. |
[30] | [ Zhang Yuanpei, Hu Kelin, Li Baoguo, et al. Spatial distribution pattern of soil salinity and saline soil in Yinchuan plain of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 19-24. ] |
[31] | 赵宣, 韩霁昌, 王欢元, 等. 毛乌素沙漠-黄土高原过渡带土壤养分空间异质性[J]. 生态学报, 2016, 36(22): 7446-7452. |
[31] | [ Zhao Xuan, Han Jichang, Wang Huanyuan, et al. Soil nutrient spatial heterogeneity in the Mu Us Desert-Loess Plateau Transition Zone[J]. Acta Ecologica Sinica, 2016, 36(22): 7446-7452. ] |
[32] | 郑睛之, 王楚栋, 王诗涵, 等. 典型小城市土壤重金属空间异质性及其风险评价: 以临安市为例[J]. 环境科学, 2018, 39(6): 2875-2883. |
[32] | [ Zheng Jingzhi, Wang Chudong, Wang Shihan, et al. Spatial variation of soil heavy metals in Lin’an City and its potential risk evaluation[J]. Environmental Science, 2018, 39(6): 2875-2883. ] |
[33] | 刘文波, 冯翠娥, 高存荣. 河套平原地下水环境背景值[J]. 地学前缘, 2014, 21(4): 147-157. |
[33] | [ Liu Wenbo, Feng Cui’e, Gao Cunrong, et al. Background value of groundwater environment in Hetao plain[J]. Earth Science Frontiers, 2014, 21(4): 147-157. ] |
[34] | 卫雄. 浅谈内蒙古河套灌区续建配套与节水改造工程存在的问题及建议[J]. 内蒙古水利, 2016(5): 40-41. |
[34] | [ Wei Xiong. A brief discussion on the problems and suggestions on the continuation of supporting facilities and water-saving renovation projects in Hetao Irrigation District, Inner Mongolia[J]. Inner Mongolia Water Conservancy, 2016(5): 40-41. ] |
[35] | 张倩, 全强, 李健, 等. 河套灌区节水条件下地下水动态变化分析[J]. 灌溉排水学报, 2018, 37(增刊2): 97-101. |
[35] | [ Zhang Qian, Quan Qiang, Li Jian, et al. Groundwater dynamic changing under water-saving irrigation conditions of Hetao Irrigation District[J]. Journal of Irrigation and Drainage, 2018, 37(Suppl. 2): 97-101. ] |
[36] | 马金慧. 内蒙古河套灌区不同引水水平对地下水环境变化的预测研究[D]. 呼和浩特: 内蒙古农业大学, 2010. |
[36] | [ Ma Jinhui. Prediction and Research on the Change of Groundwater Environment on the Conditions of Different Diversion Level in Hetao Irrigation District of Inner Mongolia[D]. Hohhot: Inner Mongolia Agricultural University, 2010. ] |
[37] | Bahceci I, Nacar A S. Subsurface drainage and salt leaching in irrigated land in South-east Turkey[J]. Irrigation and Drainage, 2009, 58(3): 346-356. |
[38] | Huang G X, Liu C Y, Sun C Y, et al. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River delta[J]. Science of the Total Environment, 2018, 625: 510-518. |
[39] | Hu Q L, Yang Y H, Han S M, et al. Degradation of agricultural drainage water quantity and quality due to farmland expansion and water-saving operations in arid basins[J]. Agricultural Water Management, 2019, 213: 185-192. |
[40] | Yan J F, Chen X, Luo G P, et al. Temporal and spatial variability response of groundwater level to land use/land cover change in oases of arid areas[J]. Chinese Science Bulletin, 2006, 51: 51-59. |
[41] | Xiao D N, Li X Y, Song D M, et al. Temporal and spatial dynamical simulation of groundwater characteristics in Minqin Oasis[J]. Science in China Series D: Earth Sciences, 2007, 50(2): 261-273. |
[42] | Mi L N, Tian J C, Si J N, et al. Evolution of groundwater in Yinchuan oasis at the upper reaches of the Yellow River after water-saving transformation and its driving factors[J]. International Journal of Environmental Research and Public Health, 2020, 17(4): 1304-1321. |
/
〈 | 〉 |