水资源及其利用

香日德-柴达木河流域水体氢氧稳定同位素特征及影响因素研究

展开
  • 1.青海师范大学地理科学学院,青海 西宁 810008
    2.青海省自然地理与环境过程重点实验室,青海 西宁 810008
    3.青藏高原地表过程与生态保育教育部重点实验室,青海 西宁 810008
    4.青海省人民政府-北京师范大学高原科学与可持续发展研究院,青海 西宁 810008
何启欣(1995-),女,硕士研究生,研究方向为自然地理与生态环境过程. E-mail: heqixin0504@163.com

收稿日期: 2021-09-03

  修回日期: 2022-02-22

  网络出版日期: 2022-05-30

基金资助

青海省重大科技专项(2019-SF-A4-3);青海省自然地理与环境过程重点实验室(2020-ZJ-Y06)

Hydrogen-oxygen isotope characteristics of water bodies in the Xiangride-Qaidam River Basin and its influencing factors

Expand
  • 1. School of Geographical Science of Qinghai Normal University, Xining 810008, Qinghai, China
    2. Qinghai Province Key Laboratory of Physical Geography and Environmental Process, Xining 810008, Qinghai, China
    3. MOE Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Xining 810008, Qinghai, China
    4. Academy of Plateau Science and Sustainability People’s Government of Qinghai Province & Beijing Normal University, Xining 810008, Qinghai, China

Received date: 2021-09-03

  Revised date: 2022-02-22

  Online published: 2022-05-30

摘要

利用香日德-柴达木河流域的湖水、河水、地下水、井水、雪等不同水体59组样品,室内测试样品δ2H和δ18O值并对其特征进行分析,探讨其影响因素、氘盈余值(d-excess)及河水沿程变化等。结果表明:(1) 香日德-柴达木河流域各水体氢氧同位素特征有差异,水循环过程中δ18O的富集程度为:湖水>冰>地下水>河水>井水>雪,河水和地下水水力联系紧密,流域各水体中河水和湖水的蒸发作用最强。(2) 湖水δ2H和δ18O的最大值均在盆地底部的霍布逊湖,最小值均在上游东支河源冬给措纳湖,表明青藏高原北部湖水δ2H和δ18O比南部偏正,存在明显的高程效应。(3) 河水δ2H和δ18O之间存在较显著的线性关系δ2H=4.93δ18O-29.6(R2=0.97),氢氧同位素组分的富集主要受控于河流蒸发的影响,河水上游蒸发作用最强,d-excess值偏大的原因可能为海拔高,气温低,空气湿度小。(4) 同一位置冰的氢氧稳定同位素较水贫化,是局部水汽反复蒸发凝结的结果。

本文引用格式

何启欣,曹广超,曹生奎,程梦园,刁二龙,高斯远,邱巡巡,赵美亮,程国 . 香日德-柴达木河流域水体氢氧稳定同位素特征及影响因素研究[J]. 干旱区研究, 2022 , 39(3) : 820 -828 . DOI: 10.13866/j.azr.2022.03.15

Abstract

In this paper, 59 sets of samples from different water bodies such as lake water, river water, groundwater, well water, and snow in the Xiangride-Qaidam River Basin were used to measure δ2H and δ18O of indoor samples; analyze their characteristics; and explore their influencing factors, deuterium excess parameter values, and river water variation along the river. Results show that (1) the hydrogen and oxygen isotope characteristics of the water bodies in the Xiangride-Delta River Basin are different. In addition, the enrichment of δ18O during water cycle is presented in the following order: lake water > ice > groundwater > river water > well water > snow. River water and groundwater are closely linked hydraulically, and the evaporation of river water and lake water is the strongest among the water bodies in the basin. (2) The maximum values of lake water δ2H and δ18O are observed in Hobson Lake at the bottom of the basin, and the minimum values are observed in the upper east branch of the river water collected from winter to the wrong lake. It shows that the δ2H and δ18O of lake water in the northern part of the Qinghai-Tibet Plateau are more positive than those in the south, and there is an obvious elevation effect. (3) Moreover, a significant linear relationship is found between river water δ2H and δ18O: δ2H = 4.93 δ18O - 29.6 (R2=0.97). The enrichment of hydrogen and oxygen isotope components is primarily controlled by the influence of river evaporation; strong evaporation effect in the upper reaches of the river; and high deuterium excess caused by high altitude, low temperature, and low air humidity. (4) Compared with water, the depletion of hydrogen and oxygen-stable isotopes in ice at the same location results from repeated evaporation and condensation of local water vapor.

参考文献

[1] 檀康达, 王仕琴, 郑文波. 基于卫星降水产品的华北北纬38°带降水氢氧同位素时空特征及水汽来源[J]. 应用生态学报, 2021, 32(6): 1951-1962.
[1] [ Tan Kangda, Wang Shiqin, Zheng Wenbo. Spatial and temporal variations of hydrogen and oxygen isotopes and sources of water vapour indicated from satellite precipitation products along the transection of 38° north latitude in North China[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 1951-1962. ]
[2] 徐秀婷. 石羊河流域降水氢氧同位素的区域差异及水汽来源分析[D]. 兰州: 西北师范大学, 2020.
[2] [ Xu Xiuting. Analyses of Regional Differences of Hydrogen and Oxygen Isotopes in Precipitation and Vapor Sources in Shiyang River Basin[D]. Lanzhou: Northwest Normal University, 2020. ]
[3] 徐秀婷, 贾文雄, 朱国锋, 等. 乌鞘岭南、北坡降水稳定同位素特征及水汽来源对比[J]. 环境科学, 2020, 41(1): 155-165.
[3] [ Xu Xiuting, Jia Wenxiong, Zhu Guofeng, et al. Stable isotope characteristics and vapor source of precipitation in the South and North slopes of Wushaoling Mountain[J]. Environmental Science, 2020, 41(1): 155-165. ]
[4] 张宏鑫, 吴亚, 罗炜宇, 等. 雷州半岛岭北地区地下水水文地球化学特征[J]. 环境科学, 2020, 41(11): 4924-4935.
[4] [ Zhang Hongxin, Wu Ya, Luo Weiyu, et al. Hydrogeochemical investigations of groundwater in the Lingbei area, Leizhou Peninsula[J]. Environmental Science, 2020, 41(11): 4924-4935. ]
[5] 郑扬帆. 利用稳定同位素方法分析地下水补给来源[J]. 内蒙古煤炭经济, 2016(14): 153-154.
[5] [ Zheng Yangfan. Analysis of Groundwater recharge sources by stable isotope[J]. Inner Mongolia Coal Economy, 2016(14): 153-154. ]
[6] 姬王佳, 黄亚楠, 李冰冰, 等. 陕北黄土区深剖面不同土地利用方式下土壤水氢氧稳定同位素特征[J]. 应用生态学报, 2019, 30(12): 4143-4149.
[6] [ Ji Wangjia, Huang Yanan, Li Bingbing, et al. Oxygen and hydrogen stable isotope compositions of soil water in deep loess profile under different land use types of northern Shaanxi, China[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4143-4149. ]
[7] 王仕琴, 宋献方, 肖国强, 等. 基于氢氧同位素的华北平原降水入渗过程[J]. 水科学进展, 2009, 20(4): 495-501.
[7] [ Wang Shiqin, Song Xianfang, Xiao Guoqiang, et al. Appliance of oxygen and hydrogen isotope in the process of precipitation infiltration in the shallow groundwater areas of North China Plain[J]. Advances in Water Science, 2009, 20(4): 495-501. ]
[8] 邢星, 陈辉, 朱建佳, 等. 柴达木盆地诺木洪地区5种优势荒漠植物水分来源[J]. 生态学报, 2014, 34(21): 6277-6286.
[8] [ Chen Hui, Zhu Jianjia, et al. Water sources of five dominant desert plant species in Nuomuhong area of Qaidam Basin[J]. Acta Ecologica Sinica, 2014, 34(21): 6277-6286. ]
[9] 杨艳林, 靖晶, 赵永波, 等. 基于氢氧稳定同位素的武汉北部新城地表水-地下水转换关系研究[J/OL]. 中国地质: 1-12[2021-04-22]. http://kns.cnki.net/kcms/detail/11.1167.P.20210419.1413.012.html.
[9] Yang Yanlin, Zhao Yongbo, et al. Conversion relationship between surface water and groundwater based on stable isotopes of D and 18O of new town in the northern Wuhan, Hubei[J/OL]. Geology in China: 1-12 [2021-04-22]. http://kns.cnki.net/kcms/detail/11.1167.P.20210419.1413.012.html. ]
[10] 孔晓乐, 杨永辉, 曹博, 等. 永定河上游地表水-地下水水化学特征及其成因分析[J]. 环境科学, 2021, 42(9): 4202-4210.
[10] [ Kong Xiaole, Yang Yonghui, Cao Bo, et al. Hydrochemical characteristics and factors of surface water and groundwater in the upper Yongding River basin[J]. Environmental Science, 2021, 42(9): 4202-4210. ]
[11] 雷义珍, 曹生奎, 曹广超, 等. 青海湖沙柳河流域不同时期地表水与地下水的相互作用[J]. 自然资源学报, 2020, 35(10): 2528-2538.
[11] [ Lei Yizhen, Cao Shengkui, Cao Guangchao, et al. Study on surface water and groundwater interaction of Shaliu River Basin in Qinghai Lake in different periods[J]. Journal of Natural Resources, 2020, 35(10): 2528-2538. ]
[12] 陈定帅, 高磊, 彭新华, 等. 干旱半干旱区土壤水稳定性氢氧同位素混合模型研究[J]. 土壤, 2018, 50(1): 190-194.
[12] [ Chen Dingshuai, Gao Lei, Peng Xinhua, et al. Hydrogen and oxygen isotope mixing model of soil water in arid and semiarid region[J]. Soils, 2018, 50(1): 190-194. ]
[13] 曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869.
[13] [ Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review[J]. Arid Zone Research, 2020, 37(4):857-869. ]
[14] 刘杨民, 张明军, 王圣杰, 等. 基于GCM的西北干旱区降水稳定氢氧同位素年际变化模拟[J]. 水土保持研究, 2016, 23(1): 260-267, 277.
[14] [ Liu Yangmin, Zhang Mingjun, Wang Shengjie, et al. Interannual variation of stable hydrogen and oxygen isotopes in precipitation in arid Northwest China based on GCMs[J]. Research of Soil and Water Conservation, 2016, 23(1): 260-267, 277. ]
[15] 郭任宏. 柴达木盆地平原区蒸散量及浅层地下水的分布特征[D]. 北京: 中国地质大学, 2015.
[15] [ Guo Renhong. Distribution of Evapotranspiration and Shallow Groundwater in Plain Area over Qaidam Basin[D]. Beijing: China University of Geosciences, 2015. ]
[16] 李劭宁, 贾晓鹏. 格尔木河222Rn同位素变化及其对地表水-地下水交互关系的指示意义[J]. 冰川冻土, 2021, 43(4): 1190-1199.
[16] [ Li Shaoning, Jia Xiaopeng. Variability of 222Rn in Golmud River and its implication for surface-groundwater interaction[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1190-1199. ]
[17] 崔亚莉, 刘峰, 郝奇琛, 等. 诺木洪冲洪积扇地下水氢氧同位素特征及更新能力研究[J]. 水文地质工程地质, 2015, 42(6): 1-7.
[17] [ Cui Yali, Liu Feng, Hao Qichen, et al. Hydrogen and oxygen isotope characteristics and renewal capacity of groundwater in Nomukhong alluvial fan[J]. Hydrogeology & Engineering Geology, 2015, 42(6): 1-7. ]
[18] 孔娜, 渠涛, 谭红兵, 等. 柴达木盆地河流同位素分布特征及径流变化[J]. 干旱区研究, 2014, 31(5): 948-954.
[18] [ Kong Na, Qu Tao, Tan Hongbing, et al. Isotope distribution characteristics and runoff changes of rivers in the Qaidam Basin[J]. Arid Zone Research, 2014, 31(5): 948-954. ]
[19] 徐凯. 柴达木盆地南翼山油田水的水化学与氢氧同位素地球化学特征[D]. 西宁: 中国科学院青海盐湖研究所, 2021.
[19] [ Xu Kai. Water Chemistry and Hydrogen-Oxygen Isotope Geochemistry of Oil Field Water in the South Wing of the Qaidam Basin[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2021. ]
[20] 康国飞. 绿洲农业区可持续性综合研究[D]. 北京: 北京林业大学, 2004.
[20] [ Kang Guofei.General Sustainability Study of Oasis Agricultural Area-Case Study, Xiangride Oasis, Qinhgai Province[D]. Beijing: Beijing Forestry University, 2004. ]
[21] 费俊亮, 贾绍凤, 朱文彬. 香日德农场异地扶贫移民对迁入地的适应性评价[J]. 首都师范大学学报(自然科学版), 2010, 31(4):58-62.
[21] [ Fei Junliang, Jia Shaofeng, Zhu Wenbin. The adaptability evaluation of poverty reduction off-site migrants in Xiangride farm to resettlement[J]. Journal of Capital Normal University (Natural Science Edition), 2010, 31(4): 58-62. ]
[22] 毛军. 柴达木盆地香日德绿洲灌溉对地下水的影响及生态响应研究[D]. 北京: 北京林业大学, 2007.
[22] [ Mao Jun. Study on the Impact of Irrigation on Groundwater and its Ecological Response of Xiangride Oasis in Qaidum Basin[D]. Beijing: Beijing Forestry University, 2007. ]
[23] 韩晓卓, 李自珍, 张克斌, 等. 水资源系统生态风险的分析与评价--以香日德绿洲地区为例[J]. 中国水土保持科学, 2005, 3(2): 113-118.
[23] [ Han Xiaozhuo, Li Zizhen, Zhang Kebin, et al. Ecological risk analysis and evaluation of water resources system: A case study of Xiangride oasis[J]. Science of Soil and Water Conservation, 2005, 3(2): 113-118. ]
[24] 吴学琴. 香日德河流域生态用水研究[D]. 西宁: 青海大学, 2017.
[24] [ Wu Xueqin. Studyon Ecological Water Use in Xiangride River Basin[D]. Xining: Qinghai University, 2017. ]
[25] 吴学琴, 李若东, 管吕军. 香日德河流域近53年ET-0变化特征[J]. 青海大学学报, 2017, 35(1): 45-50.
[25] [ Wu Xueqin, Li Ruodong, Guan Lvjun. The characteristics of potential evapotranspiration of Xiangride River Basin in the 53 years[J]. Journal of Qinghai University, 2017, 35(1): 45-50. ]
[26] 林时君, 贾绍凤. 香日德河流域水资源地理数据库的构建与应用[J]. 广东水利水电, 2010(8): 43-45.
[26] [ Lin Shijun, Jia Shaofeng. Xiangride River Basin water resources construction and application of geographic data base[J]. Guangdong Water Resources and Hydropower, 2010(8): 43-45. ]
[27] 张家好. 香日德-诺木洪山前平原地区地下水资源评价[D]. 北京: 中国地质大学, 2013.
[27] [ Zhang Jiahao. Groundwater Resource Evaluation of Xiangride-Nuomuhong Piedmont Plain[D]. Beijing: China University of Geosciences, 2013. ]
[28] 王晓娟. 柴达木盆地水资源优化配置[D]. 西安: 长安大学, 2019.
[28] [ Wang Xiaojuan. Optimal Allocation of Water Resources in Qaidam Basin[D]. Xi’an: Chang’an University, 2019. ]
[29] 毛军, 贾绍凤, 张克斌. FEFLOW软件在地下水数值模拟中的应用--以柴达木盆地香日德绿洲为例[J]. 中国水土保持科学, 2007, 5(4): 44-48.
[29] [ Mao Jun, Jia Shaofeng, Zhang Kebin. Application of FEFLOW software in numerical groundwater simulation: An example of Xiangrid oasis in the Qaidam Basin[J]. Science of Soil and Water Conservation, 2007, 5(4): 44-48. ]
[30] 冉屹立, 熊育久, 赵文利, 等. 氢氧同位素测量差异及误差来源分析[J]. 干旱区资源与环境, 2021, 35(1): 176-181.
[30] [ Ran Yili, Xiong Yujiu, Zhao Wenli, et al. Study on the consistence between stable hydrogen and oxygen isotopes measured by different equipment and methods[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 176-181. ]
[31] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
[32] 房丽晶, 高瑞忠, 贾德彬, 等. 内蒙古草原巴拉格尔河流域不同水体转化特征及环境驱动因素[J]. 应用生态学报, 2021, 32(3): 860-868.
[32] [ Fang Lijing, Gao Ruizhong, Jia Debin, et al. Characteristics and environmental driving factors of water transformation in the Balaguer River watershed of Inner Mongolia steppe[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 860-868. ]
[33] 刘洁遥, 张福平, 冯起, 等. 西北地区降水稳定同位素的云下二次蒸发效应[J]. 应用生态学报, 2018, 29(5): 109-118.
[33] [ Liu Jieyao, Zhang Fuping, Feng Qi, et al. Influence of below-cloud secondary evaporation on stable isotope composition in precipitation in Northwest China[J]. Chinese Journal of Applied Ecology, 2018, 29 (5): 109-118. ]
[34] 章新平, 姚檀栋. 青藏高原东北地区现代降水中δ2H与δ18O的关系研究[J]. 冰川冻土, 1996, 18(4): 74-79.
[34] [ Zhang Xinping, Yao Tandong. Relations between δ2H and δ18O in precipitation at present in the Northeast Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 1996, 18(4): 74-79. ]
[35] 崔蕊, 汪季, 张成福, 等. 吉兰泰盐湖氢氧同位素及湖水来源分析[J]. 内蒙古林业科技, 2019, 45(1): 17-21.
[35] [ Cui Rui, Wang Ji, Zhang Chengfu, et al. Analysis on hydrogen and oxygen isotopes and lake water source in Girantai Saline Lake[J]. Journal of Inner Mongolia Forestry Science and Technology, 2019, 45(1): 17-21. ]
[36] Liu Weiguo, Li Xiangzhong, Zhang Ling, et al. Evaluation of oxygen isotopes in carbonate as an indicator of lake evolution in arid areas: The modern Qinghai Lake, Qinghai-Tibet Plateau[J]. Chemical Geology, 2009, 268(1-2): 126-136.
[37] 冯盛楠, 刘兴起, 李华淑. 中国西部湖泊水体δ2H与δ18O的空间变化特征及其影响因素[J]. 湖泊科学, 2020, 32(4): 1199-1211.
[37] [ Feng Shengnan, Liu Xingqi, Li Huashu. Spatial variations of δ2H and δ18O in lake water of western China and their controlling factors[J]. Journal of Lake Sciences, 2020, 32(4): 1199-1211. ]
[38] 秦欢欢, 高柏, 陈益平, 等. 拉萨河夏季氢氧同位素空间分布特征及分析[J]. 地球与环境, 2021, 49(3): 277-284.
[38] [ Qin Huanhuan, Gao Bai, Chen Yiping, et al. Spatial distribution of hydrogen and oxygen isotopes in Lhasa River in summer and the implications[J]. Earth and Environment, 2021, 49(3): 277-284. ]
[39] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133: 1702-1703.
[40] 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13): 801-806.
[40] [ Zheng Shuhui, Hou Fagao, Ni Baoling. Study on the hydrogen and oxygen stable isotopes in meteoric precipitation of China[J]. Chinese Science Bulletin, 1983, 28(13): 801-806. ]
[41] 张升东. 基于环境同位素的锦绣川流域水循环规律研究[D]. 济南: 济南大学, 2013.
[41] [ Zhang Dongsheng. Study on Water Cycle Regularity Based on Envrionmental Isotope in Jinxiuchuan Basin[D]. Jinan: University of Jinan, 2013. ]
[42] 于津生, 张鸿斌, 虞福基, 等. 西藏东部大气降水氧同位素组成特征[J]. 地球化学, 1980(2): 113-121.
[42] [ Yu Jinsheng, Zhang Hongbin, Yu Fuji, et al. Oxygen isotopic composition of meteoric water in the eastern part of Xizang[J]. Geochimica, 1980(2): 113-121. ]
[43] 田立德, 姚檀栋, 孙维贞, 等. 青藏高原中部水蒸发过程中的氧稳定同位素变化[J]. 冰川冻土, 2000, 22(2): 159-164.
[43] [ Tian Lide, Yao Tandong, Sun Weizhen, et al. Study on stable isotope fractionation during water evaporation in the middle of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2000, 22(2): 159-164. ]
[44] 王贺, 李占斌, 马波, 等. 黄土高原丘陵沟壑区不同水体间转化特征--以韭园沟流域为例[J]. 中国水土保持科学, 2016, 14(3): 19-25.
[44] [ Wang He, Li Zhanbin, Ma Bo, et al. Characteristics of waters transformation in the hilly and gully regions of the Loess Plateau: A case study of the Jiuyuangou Watershed[J]. Science of Soil and Water Conservation, 2016, 14(3): 19-25. ]
[45] 喻生波, 屈君霞. 苏干湖盆地地下水氢氧稳定同位素特征及其意义[J]. 干旱区资源与环境, 2021, 35 (1): 169-175.
[45] [ Yu Shengbo, Qu Junxia. Characteristics and significance of stable hydrogen and oxygen isotopes in groundwater of Sugan Lake basin[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 169-175. ]
[46] 刘芳, 曹广超, 曹生奎, 等. 祁连山南坡水体氢氧稳定同位素特征研究[J]. 干旱区研究, 2020, 37(5): 1116-1123.
[46] [ Liu Fang, Cao Guangchao, Cao Shengkui, et al. Hydrogen and oxygen isotope characteristics of water bodies on the southern slope of the Qilian Mountains[J]. Arid Zone Research, 2020, 37(5): 1116-1123. ]
[47] 朱建佳, 陈辉, 巩国丽. 柴达木盆地东部降水氢氧同位素特征与水汽来源[J]. 环境科学, 2015, 36(8): 2784-2790.
[47] [ Zhu Jianjia, Chen Hui, Gong Guoli. Hydrogen and oxygen isotopic compositions of precipitation and its water vapor sources in eastern Qaidam Basin[J]. Environmental Science, 2015, 36(8): 2784-2790. ]
[48] 胡海英, 包为民, 王涛, 等. 水体蒸发中瑞利分馏公式的模拟及实验验证[J]. 水利学报, 2007(增刊): 314-317.
[48] [ Hu Haiying, Bao Weimin, Wang Tao, et al. Derivation of rayleigh fractionation formula and its experiment study in water evaporation[J]. Journal of Hydraulic Engineering, 2007(Suppl.): 314-317. ]
文章导航

/