水资源及其利用

基于GRACE和GLDAS的西北干旱区地下水资源量可持续性评价

展开
  • 1.北京林业大学水土保持学院,北京 100083
    2.北京林业大学水土保持国家林业重点实验室,北京 100083
阮永健(1996-),男,硕士研究生,主要研究方向为3S集成与应用. E-mail: 18257613748@163.com

收稿日期: 2021-07-09

  修回日期: 2021-09-05

  网络出版日期: 2022-05-30

基金资助

国家重点研发计划资助(2019YFC0507600);国家重点研发计划资助(2019YFC0507601);国家自然科学基金项目(41671080)

Evaluation of groundwater resource sustainability based on GRACE and GLDAS in arid region of Northwest China

Expand
  • 1. College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China 2. Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    2. Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

Received date: 2021-07-09

  Revised date: 2021-09-05

  Online published: 2022-05-30

摘要

中国西北干旱区是典型的地下水依赖型生态系统,地下水资源是西北干旱区发展的战略性支撑,实时掌握地下水的动态变化对揭示地下水的变化特征以及区域经济发展具有重要意义。以往基于人工的传统地下水监测研究耗费巨大,难以实现大尺度长时间序列的分析,重力卫星的运用为解决这一问题提供了途径,过往研究尚未对西北干旱区地下水资源量可持续性进行量化评价,为探究近年来西北干旱区地下水资源量可持续性情况,基于GRACE重力卫星和GLDAS数据反演中国西北干旱地区2002—04—2020—09共计200个月的地下水储量变化情况,判断其趋势变化,再计算基于GRACE的地下水干旱指数获取西北干旱区地下水干旱情况,最后进一步将GGDI与可持续性指数相结合,量化地下水可靠性、回弹性、脆弱性,以此评价近年来中国西北干旱区地下水资源量可持续性。结果显示:2002—2020年,西北干旱区地下水储量大幅度减少,地下水干旱程度加深,地下水平均可靠性为0.495,回弹性0.470,脆弱性为0.404,区域的地下水资源量可持续性指数SI为0.28,属于较低的地下水资源量可持续性水平。研究揭示了西北干旱区的地下水资源量可持续性时空分布规律及演变趋势,为区域地下水资源保护和管理提供理论和数据支撑。

本文引用格式

阮永健,吴秀芹 . 基于GRACE和GLDAS的西北干旱区地下水资源量可持续性评价[J]. 干旱区研究, 2022 , 39(3) : 787 -800 . DOI: 10.13866/j.azr.2022.03.12

Abstract

The arid region of Northwest China is a groundwater-dependent ecosystem. Groundwater resources are a strategic support for developing the arid region in Northwest China. It is important to understand the significance of groundwater changes in real time to reveal change characteristics of groundwater and regional economic development. Previously, traditional groundwater monitoring research was artificial and expensive and large-scale and long-term analyses were difficult. Research based on satellite information also lacks quantitative evaluations of groundwater sustainability. To explore recent groundwater sustainability in arid areas of Northwest China, GRACE gravity satellite and GLDAS data were used to invert groundwater storage changes and determine trend changes for 200 months from April 2002 to September 2020 in arid areas of Northwest China. The groundwater drought index, which is based on GRACE, was calculated to obtain the groundwater drought situation in the arid region of Northwest China. Finally, the GGDI was further combined with the sustainability index to quantify the reliability, resilience, and vulnerability of groundwater to evaluate the recent groundwater sustainability in the arid region of Northwest China. Results show that from 2002 to 2020, groundwater reserves were greatly reduced in the arid area of Northwest China, and the drought degree of groundwater has deepened. The average reliability, resilience, and vulnerability of groundwater is 0.495, 0.470, and 0.404, respectively, and the regional groundwater sustainability index (SI) is 0.28, which indicates a low groundwater sustainability level. This study reveals a temporal and spatial distribution and the evolution trend of groundwater sustainability in arid regions of Northwest China, which provides theoretical and supporting data for the protection and management of regional groundwater resources.

参考文献

[1] 王金哲, 张光辉, 王茜, 等. 西北干旱区地下水生态功能评价指标体系构建与应用[J]. 地质学报, 2021, 95(5): 1573-1581.
[1] [ Wang Jinzhe, Zhang Guanghui, Wang Qian, et al. Construction and application of evaluation index system of groundwater ecological function in northwest arid area[J]. Acta Geologica Sinica, 2021, 95(5): 1573-1581. ]
[2] 汪勇. 干旱区绿洲生态安全与地下水位调控研究[D]. 北京: 中国水利水电科学研究院, 2020.
[2] [ Wang Yong. Study on Ecological Security and Groundwater Level Regulation in Arid Areas[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2020. ]
[3] 王晓玮. 我国西北超采区地下水水量-水位双控指标确定研究[D]. 北京: 中国地质大学, 2017.
[3] [ Wang Xiaowei. Study on the Dual Control of Groundwater Abstraction Amount and Iable in Groundwater Over-Exploitation Zones in Northwest China: A Case Study in Minqin Basin[D]. Beijing: China University of Geosciences, 2017. ]
[4] 李敏, 赵丽娜, 王宏洋, 等. 我国地下水环境管理现状及管理制度构建研究[J]. 环境保护科学, 2016, 42(5): 7-11.
[4] [ Li Min, Zhao Lina, Wang Hongyang, et al. Study of the current status of groundwater environmental management in China and construction of the management system[J]. Environmental Protection Science, 2016, 42(5): 7-11. ]
[5] 中华人民共和国水利部. 2020年中国水资源公报[R]. 北京: 中华人民共和国水利部, 2021.
[5] [ Ministry of Water Resources of the People’s Republic of China. China Water Resources Bulletin 2020[R]. Beijing: Ministry of Water Resources of the People’s Republic of China, 2021. ]
[6] 杨建青, 章树安, 陈喜, 等. 国内外地下水监测技术与管理比较研究[J]. 水文, 2013, 33(3): 18-24.
[6] [ Yang Jianqing, Zhang Shu’an, Chen Xi, et al. Comparison between China and other countries on groundwater monitoring and management practices[J]. Journal of China Hydrology, 2013, 33(3): 18-24. ]
[7] 王思佳, 刘鹄, 赵文智, 等. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[7] [ Wang Sijia, Liu Hu, Zhao Wenzhi, et al. Groundwater sustainability in arid and semi-arid environments: A review[J]. Advances in Earth Science, 2019, 34(2): 210-223. ]
[8] Alley W M, Reilly T E, Franke O L. Sustainability of Ground-Water Resources[R]. U. S. Geol. Surv. Circulation, 1999.
[9] Thomas B F, Caineta J, Nanteza J. Global assessment of groundwater sustainability based on storage anomalies[J]. Geophysical Research Letters, 2017, 44(22): 11445-11455.
[10] Singh A P, Bhakar P. Development of groundwater sustainability index: A case study of western arid region of Rajasthan, India[J]. Environment Development and Sustainability, 2021, 23: 1844-1868.
[11] Jiang C, Zhang Y, Chen Z, et al. Improving assessment of groundwater sustainability with analytic hierarchy process and information entropy method: A case study of the Hohhot Plain, China[J]. Environmental Earth Sciences, 2015, 73(5): 2353-2363.
[12] 刘斌, 吴琼. 基于GRACE卫星的辽宁省2002-2017年地下水储量监测[J]. 世界地质, 2021, 40(2): 453-458.
[12] [ Liu Bin, Wu Qiong. Groundwater reserves monitoring in Liaoning Province based on GRACE satellites during 2002-2017[J]. Global Geology, 2021, 40(2): 453-458. ]
[13] Zhang M, Wu X. The rebound effects of recent vegetation restoration projects in Mu Us Sandy Land of China[J]. Ecological Indicators, 2020, 113: 106228.
[14] Neves M C, Nunes L M, Monteiro J P. Evaluation of GRACE data for water resource management in Iberia: A case study of groundwater storage monitoring in the Algarve region[J]. Journal of Hydrology: Regional Studies, 2020, 32: 100734.
[15] Karunakalage A, Sarkar T, Kannaujiya S, et al. The appraisal of groundwater storage dwindling effect, by applying high resolution downscaling GRACE data in and around Mehsana District, Gujarat, India[J]. Groundwater for Sustainable Development, 2021, 13: 100559.
[16] 束秋妍, 潘云, 宫辉力, 等. 基于GRACE的华北平原地下水储量时空变化分析[J]. 国土资源遥感, 2018, 30(2): 132-137.
[16] [ Shu Qiuyan, Pan Yun, Gong Huili, et al. Spatiotemporal analysis of GRACE-based groundwater storage variation in North China Plain[J]. Remote Sensing for Land & Resources, 2018, 30(2): 132-137. ]
[17] 孙倩, 阿丽亚·拜都热拉. 基于GRACE卫星和GLDAS系统的地下水水位估算模型--以和田地区克里雅河流域为例[J]. 地理科学进展, 2018, 37(7): 912-922.
[17] [ Sun Qian, Baidourela Aliya. Mathematical fitting of influencing factors and measured groundwater level: Take Keriya River Basin in Hetian area as an example[J]. Progress in Geography, 2018, 37(7): 912-922. ]
[18] 陶征广, 陶庭叶, 丁鑫, 等. 基于GRACE和GLDAS水文模型反演安徽省地下水储量变化[J]. 地球物理学进展, 2021, 36(4): 1456-1463.
[18] [ Tao Zhengguang, Tao Tingye, Ding Xin, et al. Groundwater storage changes in Anhui Province derived from GRACE and GLDAS hydrological model[J]. Progress in Geophysics, 2021, 36(4): 1456-1463. ]
[19] 张学渊, 魏伟, 周亮, 等. 西北干旱区生态脆弱性时空演变分析[J]. 生态学报, 2021, 41(12): 4707-4719.
[19] [ Zhang Xueyuan, Zhou Liang, et al. Analysis on spatio-temporal evolution of ecological vulnerability in arid areas of Northwest China[J]. Acta Ecologica Sinica, 2021, 41(12): 4707-4719. ]
[20] Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334: 1518-1524.
[21] Boening, Carmen, Watkins, et al. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons[J]. Journal of Geophysical Research, 2015, 120(4): 2648-2671.
[22] Zhong Y, Feng W, Humphrey V, et al. Human-induced and climate-driven contributions to water storage variations in the Haihe River basin, China[J]. Remote Sensing, 2019, 11(24): 3050.
[23] Thomas B F, Famiglietti J S, Landerer F W, et al. GRACE groundwater drought index: Evaluation of California central valley groundwater drought[J]. Remote Sensing of Environment, 2017, 198: 384-392.
[24] 王巨. 基于时序NDVI植被变化检测与驱动因素量化方法研究[D]. 兰州: 兰州大学, 2020.
[24] [ Wang Ju. Methods for Detecting Vegetation Changes and Quantifying the Driving Factors Using NDVI Timeseries by Taking Hexi As A Case Area[D]. Lanzhou: Lanzhou: Lanzhou University, 2020. ]
[25] 新疆维吾尔自治区水利部. 2015年新疆水资源公报[R]. 乌鲁木齐: 新疆维吾尔自治区水利部, 2015.
[25] [ Water Resources Department of Xinjiang Uygur Autonomous Region. Xinjiang Water Resources Bulletin 2015[R]. Urumqi: Xinjiang Water Resources Department of Xinjiang Uygur Autonomous Region, 2015. ]
[26] 吴彬, 杜明亮, 穆振侠, 等. 1956-2016年新疆平原区地下水资源量变化及其影响因素分析[J]. 水科学进展, 2021, 32(5): 659-669.
[26] [ Wu Bin, Du Mingliang, Mu Zhenxia, et al. Analysis on the variation of groundwater resources and influencing factors in Xinjiang plain area from 1956 to 2016[J]. Advances in Water Science, 2021, 32(5): 659-669. ]
[27] Rowlands D D. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements[J]. Geophysical Research Letters, 2005, 32(4): L4310.
[28] Thomas A C, Reager J T, Famiglietti J S, et al. A GRACE-based water storage deficit approach for hydrological drought characterization[J]. Geophysical Research Letters, 2014, 41(5): 1537-1545.
[29] Wang F, Wang Z, Yang H, et al. Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain[J]. Journal of Hydrology, 2020, 585: 124849.
[30] 赵付勇. 新疆托克逊县地下水资源量评价[J]. 地下水, 2021, 43(3): 80-82.
[30] [ Zhao Fuyong. Groundwater resource evaluation in Toksun County, Xinjiang[J]. Ground Water, 2021, 43(3): 80-82. ]
[31] 翟家齐, 董义阳, 祁生林, 等. 干旱区绿洲地下水生态水位阈值研究进展[J]. 水文, 2021, 41(1): 7-14.
[31] [ Zhai Jiaqi, Dong Yiyang, Qi Shenglin, et al. Advances in ecological groundwater level threshold in arid oasis regions[J]. Journal of China Hydrology, 2021, 41(1): 7-14. ]
[32] 韩明超. 沙漠绿洲地下水资源承载力及可持续利用研究[D]. 西安: 长安大学, 2013.
[32] [ Han Mingchao. Study on Groundwater Resources Carrying Capacity and Sustainable Use of Desert Oasis: Take Chahaertan Oasis of Alxa League for Example[D]. Xi’an: Chang’an university, 2013. ]
[33] Hao Y, Xie Y, Ma J, et al. The critical role of local policy effects in arid watershed groundwater resources sustainability: A case study in the Minqin oasis, China[J]. Science of the Total Environment, 2017, 601-602: 1084-1096.
[34] Zhang X, Zhang L, He C, et al. Quantifying the impacts of land use/land cover change on groundwater depletion in northwestern China: A case study of the Dunhuang oasis[J]. Agricultural Water Management, 2014, 146: 270-279.
[35] Wang S, Liu H, Yu Y, et al. Evaluation of groundwater sustainability in the arid Hexi Corridor of northwestern China, using GRACE, GLDAS and measured groundwater data products[J]. The Science of the Total Environment, 2020, 705: 135821-135829.
[36] 鲁杨. 利用GRACE与GLDAS数据监测西北地区地下水时空变化[D]. 西安: 西安科技大学.
[36] [ Lu Yang. Spatial and Temporal Variations of Groundwater in Northwest China Were Monitored Using GRACE and GLDAS Data[D]. Xi’an: Xi’an University of Science and Technology, 2020. ]
文章导航

/