降水梯度对青海湖河源湿地温室气体排放日变化的影响
收稿日期: 2021-09-09
修回日期: 2021-11-22
网络出版日期: 2022-05-30
基金资助
第二次青藏高原综合科学考察研究(2019QZKK0405);国家自然科学基金项目(41661023);青海省科技计划(2020-ZJ-Y06)
Precipitation gradient influence on daily greenhouse gas emission fluxes from a Qinghai Lake wetland
Received date: 2021-09-09
Revised date: 2021-11-22
Online published: 2022-05-30
水分是影响高寒生态系统生长发育的主要限制因素,为探明不同水分条件对湿地温室气体排放特征的影响,选取青海湖流域瓦颜山河源湿地为研究对象,利用不同的水分特征湿地,通过静态箱-气相色谱法,监测了湿地24 h温室气体排放特征,探究了2020年和2021年8月(生长旺季)的CK(对照处理)、+25%(增雨25%处理)、-25%(减雨25%处理)、+75%(增雨75%处理)、-75%(减雨75%处理)条件下,对二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)日变化趋势。结果表明:(1) CO2排放范围为47.52~123.71 mg·m-2·h-1,CH4通量范围为-8.50~6.74 µg·m-2·h-1,N2O通量范围为-15.82~6.90 µg·m-2·h-1。(2) CK、+25%、+75%处理下CO2、CH4、N2O日变化表现为排放状态;-25%处理下CO2日变化表现为排放状态,CH4、N2O表现为吸收状态;-75%处理下CO2、N2O日变化表现为排放状态,CH4表现为吸收状态,不同降水处理之间存在显著差异(P<0.05)。(3) CO2与0~10 cm土壤温度呈显著正相关(P<0.05),与土壤水分呈显著负相关(P<0.05);CH4与土壤温度呈显著负相关(P<0.05),与土壤水分呈显著负相关(P<0.05);N2O与土壤温度呈正相关(P<0.05),而CK处理与土壤水分呈负相关,减雨处理呈正相关(P<0.05),但无明显规律。(4) 不同水分处理下植物群落发生小幅度演替情况。土壤水分、温度的平衡对该区的温室气体排放通量影响较为显著,应避免失调导致温室气体排放量升高。
杨紫唯,车子涵,刘芙梅,陈克龙 . 降水梯度对青海湖河源湿地温室气体排放日变化的影响[J]. 干旱区研究, 2022 , 39(3) : 754 -766 . DOI: 10.13866/j.azr.2022.03.09
Moisture is the main limiting factor affecting the growth and development of alpine ecosystems. To explore effects of different water conditions on characteristics of greenhouse gas emissions from wetlands, wetlands at the source of the Wayan Mountain in Qinghai Lake Basin were selected. Box-gas chromatography monitored 24-hour greenhouse gas emission characteristics of wetlands and explored effects of control treatment (CK), +25% (precipitation increase 25% treatment), -25% (reduction in the daily change trend of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) under conditions of 25% rain treatment), +75% (precipitation increaseo of 75% treatment), and -75% (precipitation reduction of 75% treatment). The results showed that: (1) CO2 emission ranged from 47.52 to 123.71 mg·m-2·h-1, CH4 flux ranged from -8.50 to 6.74 µg·m-2·h-1, and N2O flux ranged from -15.82 to 6.90 µg·m-2·h-1. (2) The diurnal variation of CO2, CH4 and N2O in CK, +25% and +75% treatments showed emission status, and the diurnal variation of CO2 in -25% treatment showed emission status, while CH4 and N2O showed absorption status; The diurnal changes of CO2 and N2O under -75% treatment were emission state, while CH4 was absorption state, and there were significant differences among different precipitation treatments (P<0.05). (3) CO2 had a significant positive correlation with soil temperature (P<0.05) and a significant negative correlation with soil moisture (P<0.05); There was a significant negative correlation between CH4 and soil temperature (P<0.05) and between CH4 and soil moisture (P<0.05); There was a positive correlation between N2O and soil temperature (P<0.05), while there was a negative correlation between N2O and soil moisture in CK treatment and a positive correlation in rain reduction treatment (P<0.05), and there was no obvious regularity. (4) Small succession of plant communities occurred under different water treatments. The balance of soil moisture and temperature has a significant impact on the greenhouse gas emission flux in this area, and the imbalance should be avoided to lead to the increase of greenhouse gas emissions.
[1] | Ciais P, Sabine C, Bala G, et al. Carbon and other biogeochemical cycles[C]//Stocker T F, Qin D, Plattner G-K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013. |
[2] | Semeniuk C A, Semeniuk V. The response of basin wetlands to climate changes: A review of case studies from the Swan Coastal Plain, south-western Australia[J]. Hydrobiologia, 2013, 708(1): 45-67. |
[3] | Barros D, Albernaz A. Possible impacts of climate change on wetlands and its biota in the Brazilian Amazon[J]. Brazilian Journal of Biology, 2014, 74: 810-820. |
[4] | Gorham E. Northern Peatlands: Role in the carbon cycle and probable responses to climatic warming[J]. Ecological Applications, 1991, 11(2): 182-195. |
[5] | Meng L, Roulet N, Zhuang Q, et al. Focus on the impact of climate change on wetland ecosystems and carbon dynamics[J]. Environmental Research Letters, 2016, 11(10): 100201. |
[6] | Weedon J T, Kowalchuck G A, Aerts R, et al. Summer warming accelerates subartic peatland nitrogen cycling without changing enzyme pools or microbial community structure[J]. Global Change Biology, 2012, 1818: 138-150. |
[7] | Mitsch W J, Bernal B, Nahlik A M, et al. Wetlands, carbon, and climate change[J]. Landscape Ecology, 2013, 28: 583-597. |
[8] | Matthews E, Fung I. Methane emission from natural wetlands-global distribution, area and environmental characteristics of sources[J]. Global Biogeochemical Cycles, 1987, 1(1): 61-86. |
[9] | Brix H. Gas exchange through the soil-atmosphere on terphase and through dead culms of Phragmites australis in aconstructed reed bed receiving domestic sewage[J]. Water Research, 1990, 24: 259-266. |
[10] | Mathews E, Fung I. Methane emission from Natural Wetlands: Global distribution, area and environmental characteristics of sources[J]. Global Biogeochemical Cycles, 1987, 1: 61-86. |
[11] | 翟盘茂, 余荣, 周佰铨, 等. 1.5 ℃增暖对全球和区域影响的研究进展[J]. 气候变化研究进展, 2017, 13(5): 465-472. |
[11] | [ Zhai Panmao, Yu Rong, Zhou Baiquan, et al. Research progress on global and regional impacts of 1.5 ℃ warming[J]. Advances in Climate Change Research, 2017, 13(5): 465-472. ] |
[12] | 董星丰, 陈强, 李浩, 等. 全球气候变化对我国高寒地区冻土温室气体通量的影响[J]. 土壤与作物, 2019, 8(2): 178-185. |
[12] | [ Dong Xingfeng, Chen Qiang, Li Hao, et al. The impact of global climate change on the greenhouse gas fluxes of permafrost in my country’s alpine regions[J]. Soil and Crops, 2019, 8(2): 178-185. ] |
[13] | 宗宁, 石培礼. 模拟增温对西藏高原高寒草甸土壤供氮潜力的影响[J]. 生态学报, 2019, 39(12): 4356-4365. |
[13] | [ Zong Ning, Shi Peili. Effects of simulated warming on soil nitrogen supply potential of alpine meadows on the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2019, 39(12): 4356-4365. ] |
[14] | 高振岭, 张猛, 王磊, 等. 水分对大兴安岭不连续多年冻土区湿地泥炭分解排放二氧化碳的影响[J]. 科技信息, 2011(24): 417-419. |
[14] | [ Gao Zhenling, Zhang Meng, Wang Lei, et al. The effect of moisture on the carbon dioxide emissions from the decomposition of wetland peat in the discontinuous permafrost region of the Greater Xing’an Mountains[J]. Science and Technology Information, 2011(24): 417-419. ] |
[15] | Reth S, Reichstein M, Falge E, et al. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux-A modified model[J]. Plant and Soil, 2005, 268: 21-23. |
[16] | 陈全胜, 李凌浩, 韩兴国, 等. 水分对土壤呼吸的影响及机理[J]. 生态学报, 2003, 23(5): 972-978. |
[16] | [ Chen Quansheng, Li Linghao, Han Xingguo, et al. The effect and mechanism of water on soil respiration[J]. Acta Ecologica Sinica, 2003, 23(5): 972-978. ] |
[17] | Jauhiainen J, Takahashi H, Heikkinen J, et al. Carbon fluxes from a tropical peat swamp forest floor[J]. Global Change Biology, 2005, 11: 1788-1797. |
[18] | 牟长城, 刘霞, 孙晓新, 等. 小兴安岭阔叶林沼泽土壤CO2、CH4和N2O排放规律及其影响因子[J]. 生态学报, 2010, 30(17): 4598-4608. |
[18] | [ Mu Changcheng, Liu Xia, Sun Xiaoxin, et al. CO2, CH4, and N2O emissions from soils of broad-leaved forest swamps in Xiaoxing’an Mountains and their influencing factors[J]. Acta Ecologica Sinica, 2010, 30(17): 4598-4608. ] |
[19] | 李丽, 雷光春, 高俊琴, 等. 地下水位和土壤含水量对若尔盖木里苔草沼泽甲烷排放通量的影响[J]. 湿地科学, 2011, 9(2): 173-178. |
[19] | [ Lei Guangchun, Gao Junqin, et al. The influence of groundwater level and soil water content on methane emission fluxes from Carex marsh Ruoergai[J]. Wetland Science, 2011, 9(2): 173-178. ] |
[20] | 曹莹芳, 郭小伟, 周庚, 等. 青藏高原高寒草甸N2O排放速率及其对降水和气温的响应特征[J]. 草原与草坪, 2017, 37(4): 20-25. |
[20] | [ Cao Yingfang, Guo Xiaowei, Zhou Geng, et al. N2O emission rate of alpine meadow on the Qinghai-Tibet Plateau and its response characteristics to precipitation and temperature[J]. Grassland and Turf, 2017, 37(4): 20-25. ] |
[21] | Davidson E A. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems[C]//Roger J E, Whitman W B. Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxide, and Halo-Methane. American Society of Microbiology, Washington DC, 1991: 219-235. |
[22] | 冯晓莉, 申红艳, 李万志, 等. 1961-2017年青藏高原暖湿季节极端降水时空变化特征[J]. 高原气象, 2020, 39(4): 694-705. |
[22] | [ Feng Xiaoli, Shen Hongyan, Li Wanzhi, et al. Temporal and spatial variation characteristics of extreme precipitation in warm and humid seasons over the Qinghai-Tibet Plateau from 1961 to 2017[J]. Plateau Meteorology, 2020, 39(4): 694-705. ] |
[23] | 张乐乐, 高黎明, 陈克龙. 青海湖流域瓦颜山湿地辐射平衡和地表反照率变化特征[J]. 冰川冻土, 2018, 40(6): 1216-1222. |
[23] | [ Zhang Lele, Gao Liming, Chen Kelong. Variation characteristics of radiation balance and surface albedo of Wayan Mountain wetland in Qinghai Lake Basin[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1216-1222. ] |
[24] | 张金龙, 陈英, 葛劲松, 等. 1977-2010年青海湖环湖区土地利用/覆盖变化与土地资源管理[J]. 中国沙漠, 2013, 33(4): 1256-1266. |
[24] | [ Zhang Jinlong, Chen Ying, Ge Jinsong, et al. Land use/cover change and land resource management in the area around the Qinghai Lake from 1977 to 2010[J]. Journal of Desert Research, 2013, 33(4): 1256-1266. ] |
[25] | 祁永发. 20年来青海湖流域湿地变化研究[D]. 西宁: 青海师范大学, 2012. |
[25] | [ Qi Yongfa. Research on Wetland Changes in Qinghai Lake Basin in the Past 20 Years[D]. Xining: Qinghai Normal University, 2012. ] |
[26] | 杨羽帆. 基于氢氧稳定同位素技术的青海湖沙柳河流域降水径流过程研究[D]. 西宁: 青海师范大学, 2019. |
[26] | [ Yang Yufan. Study on the Precipitation Runoff Process in the Shaliu River Basin of Qinghai Lake Based on Hydrogen and Oxygen Stable Isotope Technology[D]. Xining: Qinghai Normal University, 2019. ] |
[27] | 黄晓宇, 陈克龙, 吴成永. 青藏高原高寒草甸生长季土壤呼吸的昼夜变化及其季节动态[J]. 云南地理环境研究, 2016, 28(3): 66-71. |
[27] | [ Huang Xiaoyu, Chen Kelong, Wu Chengyong. Diurnal changes and seasonal dynamics of soil respiration in the growing season of alpine meadows on the Qinghai-Tibet Plateau[J]. Yunnan Geographical Environment Research, 2016, 28(3): 66-71. ] |
[28] | 丁俊霞, 陈克龙, 崔航, 等. 高原鼠兔对高寒沼泽草甸土壤呼吸的干扰[J]. 生态科学, 2019, 38(6): 1-7. |
[28] | [ Ding Junxia, Chen Kelong, Cui Hang, et al. Interference of plateau pika on soil respiration in alpine swamp meadow[J]. Ecological Science, 2019, 38(6): 1-7. ] |
[29] | 吴方涛, 曹生奎, 曹广超, 等. 青海湖2种高寒嵩草湿草甸湿地生态系统水热通量比较[J]. 水土保持学报, 2017, 31(5): 176-182. |
[29] | [ Wu Fangtao, Cao Shengkui, Cao Guangchao, et al. Comparison of water and heat fluxes of two alpine Kobresia wetland wetland ecosystems in Qinghai Lake[J]. Journal of Soil and Water Conservation, 2017, 31(5): 176-182. ] |
[30] | 丁俊霞. 青藏高原高寒沼泽草甸冻融侵蚀区中的土壤呼吸研究[D]. 西宁: 青海师范大学, 2020. |
[30] | [ Ding Junxia. Research on Soil Respiration in the Freeze-thaw Erosion Zone of Alpine Swamp Meadow in Qinghai-Tibet Plateau[D]. Xining: Qinghai Normal University, 2020. ] |
[31] | 刘英, 曹生奎, 曹广超, 等. 青海湖2种高寒湿地土壤碳氮化学计量特征研究[J]. 西南农业学报, 2019, 32(11): 2630-2637. |
[31] | [ Liu Ying, Cao Shengkui, Cao Guangchao, et al. Study on soil carbon and nitrogen stoichiometric characteristics of two alpine wetlands in Qinghai Lake[J]. Journal of Southwest Agriculture, 2019, 32(11): 2630-2637. ] |
[32] | Cao G, Xu X, Long R, et al. Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau[J]. Biology Letters, 2008, 4(6): 681-684. |
[33] | 陈治荣, 蒋莉莉, 杨紫唯, 等. 一种模拟降水的自动导水装置[P]. 青海: CN212866149U, 2021-04-02. |
[33] | [ Chen Zhirong, Jiang Lili, Yang Ziwei, et al. An Automatic Water Guiding Device for Simulating Precipitation[P]. Qinghai: CN212866149U, 2021-04-02. ] |
[34] | 宋长春. 湿地生态系统碳循环研究进展[J]. 地理科学, 2003, 23(5): 622-628. |
[34] | [ Song Changchun. Research progress in wetland ecosystem carbon cycle[J]. Geographical Sciences, 2003, 23(5): 622-628. ] |
[35] | 高振岭, 张猛, 王磊, 等. 水分对大兴安岭不连续多年冻土区湿地泥炭分解排放二氧化碳的影响[J]. 科技信息, 2011(24): 417-419. |
[35] | [ Gao Zhenling, Zhang Meng, Wang Lei, et al. The influence of moisture on the carbon dioxide emissions from the decomposition of peat in the discontinuous permafrost zone of the Greater Xing’an Mountains[J]. Science and Technology Information, 2011(24): 417-419. ] |
[36] | 吴祥文, 臧淑英, 马大龙, 等. 大兴安岭多年冻土区森林土壤温室气体通量[J]. 地理学报, 2020, 75(11): 2319-2331. |
[36] | [ Wu Xiangwen, Zang Shuying, Ma Dalong, et al. Greenhouse gas fluxes from forest soils in permafrost regions of Daxing’anling[J]. Acta Geographica Sinica, 2020, 75(11): 2319-2331. ] |
[37] | 牟长城, 程伟, 孙晓新, 等. 小兴安岭落叶松沼泽林土壤CO2、N2O和CH4的排放规律[J]. 林业科学, 2010, 46(7): 7-15. |
[37] | [ Mu Changcheng, Cheng Wei, Sun Xiaoxin, et al. Seasonal variation of emission fluxes of CO2 N2O and CH4from Larix gmelinii swamps soils in Xiaoxing’an Mountains of China[J]. Scientia Silvae Sinicae, 2010, 46(7): 7-15. ] |
[38] | 胡启武, 吴琴, 李东, 等. 不同土壤水分含量下高寒草地CH4释放的比较研究[J]. 生态学杂志, 2005, 24(2): 118-122. |
[38] | [ Hu Qiwu, Wu Qing, Li Dong, et al. A comparative study on CH4 emissions from alpine grasslands under different soil moisture contents[J]. Journal of Ecology, 2005, 24(2): 118-122. ] |
[39] | 沈壬兴, 上官行健, 王明星, 等. 广州地区稻田甲烷排放及中国稻田甲烷排放的空间变化[J]. 地球科学进展, 1995, 10(4): 387-392. |
[39] | [ Shen Renxing, Shangguan Xingjian, Wang Mingxing, et al. Methane emission from rice paddies in Guangzhou and its spatial variation in China[J]. Advances in Earth Sciences, 1995, 10(4): 387-392. ] |
[40] | Minkkinen K, Laine J. Vegetation heterogeneity and ditches create spatial variability in methane fluxes from peatlands drained for forestry[J]. Plant Soil, 2006, 285: 289-304. |
[41] | Li H L, Han Y, Cai Z C. Nitrogen mineralization in paddy soils of the Taihu region of China under anaerobic conditions: Dynamics and model fitting[J]. Geoderma, 2003, 115(3/4): 161-175. |
[42] | 李平, 魏玮, 郎漫. 不同水分对半干旱地区砂壤土温室气体排放的短期影响[J]. 农业环境科学学报, 2021, 40(5): 1124-1132. |
[42] | [ Li Ping, Lang Man. Short-term effects of different moisture on greenhouse gas emission from sandy loam soil in semi-arid region[J]. Journal of Agricultural Environmental Sciences, 2021, 40(5): 1124-1132. ] |
/
〈 | 〉 |