泛第三极环境与绿色丝路

1979—2017年CRU、ERA5、CMFD格点降水数据在青藏高原适用性评估

展开
  • 青海省气候中心, 青海 西宁 810001
温婷婷(1992-),女,硕士,工程师,主要从事气候变化及异常诊断研究. E-mail: 790662339@qq.com

收稿日期: 2021-08-17

  修回日期: 2021-10-27

  网络出版日期: 2022-05-30

基金资助

中国气象局创新发展专项(CXFZ2021Z034);国家自然科学基金项目(41861013);青海省基础研究计划项目(2022-ZJ-767);青海省气候中心自筹项目(qhzxzc2021002)

Assessment of CRU, ERA5, CMFD grid precipitation data for the Tibetan Plateau from 1979 to 2017

Expand
  • Qinghai Climate Centre, Xining 810001, Qinghai, China

Received date: 2021-08-17

  Revised date: 2021-10-27

  Online published: 2022-05-30

摘要

利用1979—2017年青藏高原131个气象台站实测降水资料,分别从年、季尺度对CRU、ERA5和CMFD 3种再分析降水资料在青藏高原的适用性进行了评估。结果表明:(1) CRU、ERA5、CMFD 3种数据对青藏高原年降水的模拟能力都很强,与观测值的相关系数均超过了0.9,较观测降水量值均偏大;CRU和CMFD的春季降水较为接近观测值,CMFD夏、秋季降水与观测值最接近,3种数据对冬季降水模拟能力均较弱。(2) 从降水量分布来看,CMFD数据对青藏高原年、春季、夏季、冬季降水的分布模拟能力最好,3种数据对青藏高原秋季降水的模拟能力具有区域差异性,CRU、CMFD在青藏高原西部的降水与观测值较为接近。(3) 从变化趋势来看,青藏高原年、春季、夏季、秋季降水均呈增加趋势,其中夏季增加幅度较大,冬季降水整体呈减少趋势。(4) CRU数据对青藏高原年、春季、夏季、秋季降水的变化趋势与观测值较为一致,其次为ERA5,ERA5冬季降水与观测值较为一致。(5) 从偏差分析来看,CMFD数据与观测值的年、季降水偏差最小,最接近观测值。(6) 3种数据与站点平均的年、季降水的时间变化序列表明,CMFD的年、春季、夏季、秋季降水与观测值的变化最为接近,其次为CRU;CMFD冬季降水较观测值最为接近,但相关系数未通过95%的显著性检验。

本文引用格式

温婷婷,郭英香,董少睿,东元祯,来晓玲 . 1979—2017年CRU、ERA5、CMFD格点降水数据在青藏高原适用性评估[J]. 干旱区研究, 2022 , 39(3) : 684 -697 . DOI: 10.13866/j.azr.2022.03.03

Abstract

In this paper, CRU, ERA5, and CMFD precipitation data for the Qinghai-Xizang Plateau were evaluated on annual and seasonal scales and compared with observed precipitation data from 131 weather stations. (1) The three data types all showed a strong ability to describe total annual precipitation on the plateau, and their correlation coefficients with the observed values were all >0.9. Results from all three models were generally higher than observed precipitation. CRU and CMFD results were closest to observed values in spring, while CMFD results were closest to the observed values in summer and fall; all three models showed the weakest correlations with observed values for winter precipitation. (2) In terms of precipitation distribution, CMFD data had the best ability to simulate plateau precipitation annually, and in spring, summer, and winter. The models showed regional differences in describing fall precipitation. CRU and CMFD results were closest to observed values on the western plateau. (3) Plateau precipitation increased during spring, summer, and fall, especially in the summer, and decreased in the winter. (4) The annual and seasonal variation (spring, summer, and fall) in the CRU data was consistent with that of the observed data, and the winter precipitation results from ERA5 were consistent with observed values. (5) The deviation between CMFD results and observed annual and seasonal precipitation was the smallest. (6) Time series analysis showed that CMFD annual, spring, summer, and fall precipitation results were closest to the observed values, followed by CRU. CMFD winter precipitation results were closest to the observed values, but the correlation coefficient failed the significance test of 95%.

参考文献

[1] 姚檀栋, 朴世龙, 沈妙根, 等. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J]. 中国科学院院刊, 2017, 32(9): 976-984.
[1] [ Yao Tandong, Piao Shilong, Shen Miaogen, et al. Chained impacts on modern environment of interaction between westerlies and indian monsoon on Tibetan Plateau[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 976-984. ]
[2] 葛根巴图, 魏巍, 张晓, 等. 柴达木盆地极端气候时空趋势及周期特征[J]. 干旱区研究, 2020, 37(2): 304-313.
[2] [ Ge Genbatu, Zhang Xiao, et al. Spatiotemporal trends and periodic features of climate extremes over the Qaidam Basin, China, during 1960-2014[J]. Arid Zone Research, 2020, 37(2): 304-313. ]
[3] 张旺雄, 刘普幸. 1961-2017年柴达木盆地干湿状况及其影响因子[J]. 干旱区研究, 2019, 36(6): 1391-1400.
[3] [ Zhang Wangxiong, Liu Puxing. Surface humid situation and its affecting factors in the Qaidam Basin from 1961 to 2017[J]. Arid Zone Research, 2019, 36(6): 1391-1400. ]
[4] 韩进军, 王建萍, 陈亮, 等. 影响柴达木盆地降水量变化的主要天气动力因素[J]. 干旱区研究, 2020, 37(2): 314-324.
[4] [ Han Jinjun, Wang Jianping, Chen Liang, et al. The main weather dynamic factors affecting precipitation change in the Qaidam Basin[J]. Arid Zone Research, 2020, 37(2): 314-324. ]
[5] 米玛卓嘎, 秦增良, 肖卓靖, 等. 西藏夏季降水特征及其预测分析[J]. 干旱区研究, 2019, 36(5): 1060-1069.
[5] [ Mirmah Zhuoga, Qin Zengliang, Xiao Zhuojing, et al. Summer precipitation in Tibet and its prediction[J]. Arid Zone Research, 2019, 36(5): 1060-1069. ]
[6] 施能, 陈绿文, 林振敏. 全球降水与区域性季风降水相关分析[J]. 气象科技, 2002(2): 73-79.
[6] [ Shi Neng, Chen Lvwen, Lin Zhenmin. Correlation analysis between global precipitation and regional monsoon precipitation[J]. Meteorological Science and Technology, 2002(2): 73-79. ]
[7] 自勇, 许吟隆, 傅云飞. GPCP与中国台站观测降水的气候特征比较[J]. 气象学报, 2007, 65(1): 63-74.
[7] [ Zi Yong, Xu Yinlong, Fu Yunfei. Climatological comparison studies between GPCP and raingauges precipitations in China[J]. Acta Meteorologica Sinica, 2007, 65(1): 63-74. ]
[8] 姜贵祥, 孙旭光. 格点降水资料在中国东部夏季降水变率研究中的适用性[J]. 气象科学, 2016, 36(4): 448-456.
[8] [ Jiang Guixiang, Sun Xuguang. Application of grid precipitation datasets in summer precipitation variability over East China[J]. Journal of the Meteorological Sciences, 2016, 36(4): 448-456. ]
[9] 王红丽, 刘健, 况雪源. 四种再分析资料与长江中下游地区降水观测资料的对比研究[J]. 长江流域资源与环境, 2008, 17(5): 703-711.
[9] [ Wang Hongli, Liu Jian, Kuang Xueyuan. Comparison of four reanalysis precipitation datasets and observation over the middle-lower reaches of the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2008, 17(5): 703-711. ]
[10] 刘丹丹, 梁丰, 王婉昭, 等. 基于GPCC数据的1901-2010年东北地区降水时空变化[J]. 水土保持研究, 2017, 24(2): 124-131.
[10] [ Liu Dandan, Liang Feng, Wang Wanzhao, et al. Spatial and temporal variations of precipitation in Northeast China from 1901 to 2010 based on GPCC data[J]. Research of Soil and Waterv Conservation, 2017, 24(2): 124-131. ]
[11] Wang A H, Zeng X B. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D5): D05102.
[12] Wang Dan, Wang Aihui. Applicability assessment of GPCC and CRU precipitation products in China during 1901 to 2013[J]. Climatic and Environmental Research, 2017, 22(4): 446-462.
[13] Wang S, Liu S X, Mo X G, et al. Evaluation of remotely sensed precipitation and its performance for streamflow simulations in basins of the Southeast Tibetan Plateau[J]. Journal of Hydrometeorology, 2015, 16(6): 2577-2594.
[14] 黄浠, 王中根, 桑燕芳, 等. 雅鲁藏布江流域不同源降水数据质量对比研究[J]. 地理科学进展, 2016, 35(3): 339-348.
[14] [ Huang Xi, Wang Zhonggen, Sang Yanfang, et al. Precision of data in three precipitation datasets of the Yarlung Zangbo River Basin[J]. Progress in Geography, 2016, 35(3): 339-348. ]
[15] 孙畅, 王子谦, 杨崧. 青藏高原西侧地区冬季降水的年际变率及其影响因子[J]. 大气科学, 2019, 43(2): 350-360.
[15] [ Sun Chang, Wang Ziqian, Yang Song. Interannual variability of winter precipitation over the western side of Tibetan Plateau and its impact factors[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(2): 350-360. ]
[16] 王坤鑫, 张寅生, 张腾, 等. 1979-2017年青藏高原色林错流域气候变化分析[J]. 干旱区研究, 2020, 37(3): 652-662.
[16] [ Wang Kunxin, Zhang Yinsheng, Zhang Teng, et al. Analysis of climate in the Selin Co Basin, Tibetan Plateau from 1979 to 2017[J]. Arid Zone Research, 2020, 37(3): 652-662. ]
[17] 谢欣汝, 游庆龙, 保云涛, 等. 基于多源数据的青藏高原夏季降水与水汽输送的联系[J]. 高原气象, 2018, 37(1): 78-92.
[17] [ Xie Xinru, You Qinglong, Bao Yuntao, et al. The connection between the precipitation and water vapor transport over Qing-hai-Tibetan Plateau in summer based on the multiple datasets[J]. Plateau Meteorology, 2018, 37(1): 78-92. ]
文章导航

/