中亚高山冰川表面高程变化时序重建
收稿日期: 2021-08-01
修回日期: 2021-10-20
网络出版日期: 2022-05-30
基金资助
中国科学院创新交叉团队资助项目(JCTD-2019-20);新疆天山创新团队(2020D14016);国家自然基金项目(U2003201);国家自然基金项目(41671 034);国家自然基金项目(41975036);国家自然基金项目(42075132);国家自然基金项目(41601364);国家自然基金项目(42041004);智慧中原地理信息技术协同创新中心项目(2020C002);中央级公益性科研院所基本科研业务费专项(HKY-JBYW-2018-03);新疆维吾尔自治区优秀博士后资助;河南省科技攻关项目(222102320306);教育部产学合作协同育人项目:基于PIE的遥感信息智能提取课程群建设(202102245019);河南理工大学博士基金(B2022-8)
Temporal reconstruction of alpine glacier surface elevation variation in Central Asia
Received date: 2021-08-01
Revised date: 2021-10-20
Online published: 2022-05-30
中亚高山冰川区地形复杂,站点观测和传统实地测量范围十分有限。卫星激光测高技术可实现大范围冰川表面高程变化监测。以2003—2009年ICESat激光测高数据为数据源,参考2000年的SRTM高程数据,建立冰川区点云去噪及其精度优化算法和多尺度冰川区表面高程时空变化分析模型,并分析了2003—2009年间中亚山区整体与各分区冰川表面高程时序变化。结果表明:中亚高山冰川区的冰川表面平均高程整体呈下降趋势,表现出明显的区域差异。其中,2003—2009年中亚冰川表面高程总体下降了9.59±1.89 m;I区(即西藏和青海南部)的冰川表面高程下降了6.51±2.9 m;II区(即新疆、青海北部和甘肃部分地区)下降了7.87±5.03 m;III区(即中国境外,中亚地区的部分国家)下降了9.81±5.1 m,且监测到2004—2005年冰川表面高程上升。本研究方法对冰川区点云类高程脚点监测具有一定的通用性,但对基准DEM的依赖度较高。
都伟冰,张世琼,李均力,包安明,王双亭,史宁可,许琳娟,高鑫,马丹丹,郑岩超 . 中亚高山冰川表面高程变化时序重建[J]. 干旱区研究, 2022 , 39(3) : 676 -683 . DOI: 10.13866/j.azr.2022.03.02
The topography of the alpine glacier area in Central Asia is complex. Satellite laser altimetry technology can be used to monitor large-scale glacier surface elevation change. This study used ICESat laser altimetry data from 2003 to 2009, and shuttle radar topography mission (SRTM) elevation data and Randolph glacier inventory (RGI) 6.0 cataloging data for 2000 to monitor the surface elevation change of alpine glaciers in Central Asia. The glacial region of Central Asia is divided into three regions according to geographical form. First, the data were tested for normality to eliminate error. When a normal distribution was not observed, outlier values from the standard deviation of the linear regression were selected as abnormal. Point cloud denoising and its accuracy optimization algorithm and a multi-scale analysis model of temporal and spatial variation in surface elevation in the glacier area were established. A cubic polynomial model was used to fit the glacier surface elevation data for different scales across the whole area and sub regions of the high Asian mountains. A time series reconstruction of changes in alpine glacier surface elevation in Central Asia was carried out based on the data for each region from 2003. Temporal changes in glacier surface elevation from 2003 to 2009 were analyzed. The results showed that the average elevation for the whole region decreased, with clear regional differences. From 2003 to 2009, the surface elevation of high Asian glaciers decreased by 9.59 ± 1.89 m. The glacier surface elevation in Areas I (i.e., Tibet and southern Qinghai), II (i.e., Xinjiang, Northern Qinghai, and some parts of Gansu), and III (i.e., outside China and some countries in Central Asia) decreased by 6.51 ± 2.9 m, 7.87 ± 5.03 m, and 9.81 ± 5.1 m, respectively. The glacier surface elevation increased from 2004 to 2005. Area I showed the slowest decline in glacier elevation, followed by Area II; Area III showed the fastest decline. This research method has universal application potential for monitoring point cloud elevation in glacier areas. The model evaluation parameter (R2) was >0.98, indicating that the cubic polynomial relationship between ICESat data and SRTM elevation data showed strong universality in this area. However, this will make the point cloud data more sparse, and the model is highly dependent on the benchmark DEM.
[1] | Bocchiola D, G Diolaiuti. Recent (1980-2009) evidence of climate change in the upper Karakoram Pakistan[J]. Theoretical and Applied Climatology, 2013, 113(3-4): 611-641. |
[2] | Treichler D, Kääb A, Salzmann N, et al. Recent glacier and lake changes in high mountain Asia and their relation to precipitation changes[J]. The Cryosphere, 2019, 13(11): 2977-3005. |
[3] | Hugonnet R, McNabb R, Berthier E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7856): 726. |
[4] | Farinotti D, Immerzeel W W, de Kok R J, et al. Manifestations and mechanisms of the Karakoram glacier anomaly[J]. Nature Geoscience, 2020, 13(1): 8. |
[5] | 吴珊珊, 姚治君, 姜丽光, 等. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246. |
[5] | [ Wu Shanshan, Yao Zhijun, Jiang Liguang, et al. Review on the research methods of modern glacier volume change[J]. Advances in Earth Science, 2015, 30(2): 237-246. ] |
[6] | Zhao X R, Wang X, Wei J F, et al. Spatiotemporal variability of glacier changes and their controlling factors in the Kanchenjunga region Himalaya based on multi-source remote sensing data from 1975 to 2015[J]. Science of the Total Environment, 2020, 745: 140995, doi: 10.1016/j.scitotenv.2020.140995. |
[7] | Huang T J, Jia L, Menenti M, et al. A new method to estimate changes in glacier surface elevation based on polynomial fitting of sparse ICESat-GLAS Footprints[J]. Sensors, 2017, 17(8): 1803, doi: 10.3390/s17081803. |
[8] | Nuth C, Moholdt G, Kohler J, et al. Svalbard glacier elevation changes and contribution to sea level rise[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F1), doi: 10.1029/2008JF001223. |
[9] | Kääb A, Berthier E, Nuth C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas[J]. Nature: International Weekly Journal of Science, 2012, 488(7412): 495-498. |
[10] | 杜小平, 郭华东, 范湘涛, 等. 基于ICESat/GLAS数据的中国典型区域SRTM与ASTER GDEM高程精度评价[J]. 地球科学, 2013, 38(4): 887-897. |
[10] | [ Du Xiaoping, Guo Huadong, Fan Xiangtao, et al. Elevation accuracy evaluation of SRTM and aster GDEM in typical regions of China based on ICESat/GLAS data[J]. Journal of Earth Science, 2013, 38(4): 887-897. ] |
[11] | 宗继彪, 叶庆华, 田立德. 基于ICESat/GLAS, SRTM DEM和GPS观测青藏高原纳木那尼冰面高程变化(2000-2010年)[J]. 科学通报, 2014, 59(21): 2108-2118. |
[11] | [ Zong Jibiao, Ye Qinghua, Tian Lide. Observation of elevation change of namunani ice surface on Qinghai Tibet Plateau based on ICESat/GLAS, SRTM DEM and GPS (2000-2010)[J]. Chinese Science Bulletin, 2014, 59(21): 2108-2118. ] |
[12] | 米玛卓嘎, 秦增良, 肖卓靖, 等. 西藏夏季降水特征及其预测分析[J]. 干旱区研究, 2019, 36(5): 1060-1069. |
[12] | [ Mirmah Zhuoga, Qin Zengliang, Xiao Zhuojing, et al. Summer precipitation in Tibet and its prediction[J]. Arid Zone Research, 2019, 36(5): 1060-1069. ] |
[13] | 杨昭明, 张调风. 1961-2017年青藏高原东北部雨季降水量变化及其贡献度分析[J]. 干旱区研究, 2021, 38(1): 22-28. |
[13] | [ Yang Zhaoming, Zhang Tiaofeng. Analysis of precipitation change and its contribution in the rainy season in the northeast Qinghai-Tibet Plateau from 1961 to 2017[J]. Arid Zone Research, 2021, 38(1): 22-28. ] |
[14] | 陈丽娟, 许力, 江滢. 2004年北半球大气环流及对中国气候异常的影响[J]. 气象, 2005, 31(4): 27-31. |
[14] | [ Chen Lijuan, Xu Li, Jiang Ying. Atmospheric circulation in the northern hemisphere in 2004 and its impact on climate anomalies in China[J]. Meteorological Monthly, 2005, 31(4): 27-31. ] |
[15] | 博尔楠·哈不都拉, 恰里哈尔, 阿衣敏. 2004年全国夏季降水异常及其成因[J]. 安徽农业科学, 2014, 42(16): 5159-5160. |
[15] | [ Bornan Habura, Chariha, Aymin. Summer precipitation anomaly and its causes in China in 2004[J]. Journal of Anhui Agricultural Sciences, 2014, 42(16): 5159-5160. ] |
[16] | 孙建华, 卫捷, 赵思雄, 等. 2005年夏季的主要天气及其环流分析[J]. 气候与环境研究, 2006, 11(2): 138-154. |
[16] | [ Sun Jianhua, Wei Jie, Zhao Sixiong, et al. Analysis of main weather and circulation in summer of 2005[J]. Climatic and Environmental Research, 2006, 11(2): 138-154. ] |
[17] | 杨莲梅, 史玉光, 汤浩. 新疆北部冬季降水异常成因[J]. 应用气象学报, 2010, 21(4): 491-499. |
[17] | [ Yang Lianmei, Shi Yuguang, Tang Hao. Causes of winter precipitation anomaly in Northern Xinjiang[J]. Journal of Applied Meteorological Science, 2010, 21(4): 491-499. ] |
[18] | 蒋宗立, 王磊, 张震, 等. 2000-2014年喀喇昆仑山音苏盖提冰川表面高程变化[J]. 干旱区地理, 2020, 43(1): 12-19. |
[18] | [ Jiang Zongli, Wang Lei, Zhang Zheng, et al. Surface elevation change of Yinsugeti glacier in Karakoram mountain from 2000 to 2014[J]. Arid Land Geography, 2020, 43(1): 12-19. ] |
[19] | 傅抱璞. 地形和海拔高度对降水的影响[J]. 地理学报, 1992, 47(4): 302-314. |
[19] | [ Fu Baopu. Influence of topography and altitude on precipitation[J]. Acta Geographica Sinica, 1992, 47(4): 302-314. ] |
[20] | 陶静, 赵文吉, 王旭, 等. 念青唐古拉山西段冰湖时空变化分析[J]. 干旱区研究, 2021, 38(3): 618-628. |
[20] | [ Tao Jing, Zhao Wenji, Wang Xu, et al. Spatial changes of the glacial lakes in the western Nyainqentanglha Range[J]. Arid Zone Research, 2021, 38(3): 618-628. ] |
[21] | 赵美亮, 曹广超, 曹生奎, 等. 1980-2017年青海省地表温度时空变化特征[J]. 干旱区研究, 2021, 38(1): 178-187. |
[21] | [ Zhao Meiliang, Cao Guangchao, Cao Shengkui, et al. Spatial-temporal variation characteristics of land surface temperature in Qinghai Province from 1980 to 2017[J]. Arid Zone Research, 2021, 38(1): 178-187. ] |
[22] | 曾磊, 杨太保, 田洪阵. 近40年东帕米尔高原冰川变化及其对气候的响应[J]. 干旱区资源与环境, 2013, 27(5): 144-150. |
[22] | [ Zeng Lei, Yang Taibao, Tian Hongzhen. Glacier change in the East Pamir Plateau in recent 40 years and its response to climate[J]. Journal of Arid Land Resources and Environment, 2013, 27(5): 144-150. ] |
/
〈 | 〉 |