香日德-柴达木河流域土壤湿度时空变化特征及其影响因素
收稿日期: 2021-07-13
修回日期: 2021-09-15
网络出版日期: 2022-03-30
基金资助
青海省重大科技专项(2019-SF-A4-3);青海省创新平台建设专项青海省自然地理与环境过程重点实验室项目(2020-ZJ-Y06)
Temporal and spatial variation characteristics and influencial factors of soil moisture in the Xiangride-Qaidam River Basin
Received date: 2021-07-13
Revised date: 2021-09-15
Online published: 2022-03-30
土壤湿度作为生态环境的关键因子,是土壤监测和生态环境变化的重要指标。本研究基于MOD11A2 LST和MOD13A2 NDVI数据,通过温度干旱植被指数TVDI(Temperature Vegetation Dryness Index)、相关性分析和区域统计分析等数理统计分析方法对香日德-柴达木河流域植被生长季的土壤湿度时空分布特征及其影响因素进行分析。结果表明:(1) 香日德-柴达木河流域2005年、2010年、2015年和2020年植被生长季TVDI平均值为0.61,最大值为2015年(0.64),最小值为2020年(0.58),年际TVDI值缓慢下降,但在2015年出现上升现象,研究区旱情不稳定且长期处于干旱等级。(2) 不同等级土壤湿度的面积从大到小依次为干旱>极干旱>正常>湿润>极湿润,分别占研究区总面积的30.63%、25.77%、22.16%、16.44%、5.01%。(3) TVDI在空间分布上呈现出由西北向东南逐渐递减的趋势,具有明显的区域差异性。(4) TVDI值与海拔呈负相关关系,海拔每升高500 m,TVDI值减少0.11,TVDI值与平均气温呈正相关关系,与坡度和降水量之间不存在明显的相关性关系。
关键词: 土壤湿度; 温度植被干旱指数; 相关性分析; 香日德-柴达木河流域
程梦园,曹广超,赵美亮,刁二龙,何启欣,高斯远,邱巡巡,程国 . 香日德-柴达木河流域土壤湿度时空变化特征及其影响因素[J]. 干旱区研究, 2022 , 39(2) : 615 -624 . DOI: 10.13866/j.azr.2022.02.28
As a key factor of the ecological environment, soil moisture is an important indicator for soil monitoring and changes to the ecological environment. This study is based on MOD11A2 LST and MOD13A2 NDVI data, and used mathematical statistical analysis methods, including the temperature-vegetation dryness index (TVDI), correlation analysis, and regional statistical analysis. The temporal and spatial distribution of humidity characteristics and its influencing factors were analyzed. The average TVDI value in the vegetation growing season of the Xiangride-Qaidam River basin from 2005 to 2020 was 0.61; the maximum value was noted in 2015 (0.64) and the minimum value occurred in 2020 (0.58). The interannual TVDI value slowly decreased over time; however, it did increase in 2015. The drought situation in the study area was unstable, and remained at a drought level for an extended time period. The area corresponding to different soil moisture levels, in descending order, was as follows: drought > extremely arid > normal > humid > extremely humid, accounting for 30.63%, 25.77%, 22.16%, 16.44%, and 5.01% of the total area, respectively. The spatial distribution of TVDI gradually decreased from northwest to southeast, with obvious regional differences. Moreover, the TVDI value had a negative correlation with altitude, decreasing by 0.11 for every 500 m increase in altitude. The TVDI was positively correlated with the average temperature, but had no obvious correlation with precipitation.
[1] | 李海霞, 杨井, 陈亚宁, 等. 基于MODIS数据的新疆地区土壤湿度反演[J]. 草业学报, 2017, 26(6):16-27. |
[1] | [ Li Haixia, Yang Jing, Chen Yaning, et al. Retrieval of soil moisture information in Xinjiang using MODIS[J]. Journal of Acta Prataculturae Sinica, 2017, 26(6):16-27. ] |
[2] | 邓雅文, 凌子燕, 孙娜, 等. 基于广义回归神经网络的京津冀地区土壤湿度遥感逐日估算研究[J]. 地球信息科学学报, 2021, 23(4):749-761. |
[2] | [ Deng Yawen, Ling Ziyan, Sun Na, et al. Daily estimation of soil moisture over Beijing-Tianjin-Hebei Region based on General Regression Neural Network Model[J]. Journal of Geo-information Science, 2021, 23(4):749-761. ] |
[3] | 王娜, 易桂花, 张廷斌, 等. 基于TVDI的青藏高原腹地生长季土壤湿度时空变化及其气候响应[J]. 草业科学, 2020, 37(11):2185-2197. |
[3] | [ Wang Na, Yi Guihua, Zhang Tingbin, et al. Spatiotemporal and climate-related variations in soil moisture during the growing season in the hinterland of the Qinghai-Tibet Plateau: An analysis using the temperature-vegetation dryness index[J]. Pratacultural Science, 2020, 37(11):2185-2197. ] |
[4] | 王佳新, 萨楚拉, 毛克彪, 等. 蒙古高原土壤湿度时空变化格局及其对气候变化的响应[J]. 国土资源遥感, 2021, 33(1):231-239. |
[4] | [ Wang Jiaxin, Sa Chula, Mao Kebiao, et al. Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change[J]. Remote Sensing for Land and Resources, 2021, 33(1):231-239. ] |
[5] | 杨玲, 杨艳昭. 基于TVDI的西辽河流域土壤湿度时空格局及其影响因素[J]. 干旱区资源与环境, 2016, 30(2):76-81. |
[5] | [ Yang Ling, Yang Yanzhao. The spatial and temporal pattern of soil moisture in the west Liaohe river basin based on TVDI method and its influencing factors[J]. Journal of Arid Land Resources and Environment, 2016, 30(2):76-81. ] |
[6] | 聂艳, 马泽玥, 周逍峰, 等. 阿克苏河流域土壤湿度反演与监测研究[J]. 生态学报, 2019, 39(14):5138-5148. |
[6] | [ Nie Yan, Ma Zeyue, Zhou Xiaofeng, et al. Soil moisture retrieval and monitoring in the Aksu River basin[J]. Acta Ecologica Sinica, 2019, 39(14):5138-5148. ] |
[7] | Waston K, Pohn H A. Thermal interia mapping from satellite discrimination of geology unit in Oman[J]. Journal of Research of the U. S. Geological Survey, 1974, 2(2):147-158. |
[8] | 王静, 方锋, 黄鹏程, 等. AMSR-E土壤水分产品评价及在干旱监测中的应用[J]. 干旱区研究, 2021, 38(3):650-664. |
[8] | [ Wang Jing, Fang Feng, Huang Pengcheng, et al. Evaluation of advanced microwave scanning radiometer for EOS(AMSR-E) soil moisture products over China and its application in drought monitoring[J]. Arid Zone Research, 2021, 38(3):650-664. ] |
[9] | 李占杰, 陈基培, 刘艳民, 等. 土壤水分遥感反演研究进展[J]. 北京师范大学学报(自然科学版), 2020, 56(3):474-481. |
[9] | [ Li Zhanjie, Chen Jipei, Liu Yanmin, et al. Soil moisture retrieval from remote sensing[J]. Journal of Beijing Normal University(Natural Science), 2020, 56(3):474-481. ] |
[10] | 李毅, 陈新国, 赵会超, 等. 土壤干旱遥感监测的最新研究进展[J]. 水利与建筑工程学报, 2021, 19(1):1-7. |
[10] | [ Li Yi, Chen Xinguo, Zhao Huichao, et al. Latest advances of soil drought and its monitoring based on remote sensing[J]. Journal of Water Resources and Architectural Engineering, 2021, 19(1):1-7. ] |
[11] | 刘一哲, 冯文兰, 扎西央宗, 等. 基于MODIS TVDI和模糊数学方法的藏北地区旱情等级遥感监测[J]. 干旱区研究, 2020, 37(1):86-96. |
[11] | [ Liu Yizhe, Feng Wenlan, Zhaxi Yangzong, et al. Remote sensing monitoring of drought level in north Tibet based on MODIS TVDI and Fuzzy Mathematics[J]. Arid Zone Research, 2020, 37(1):86-96. ] |
[12] | Cao Xiaoming, Feng Yixing, Shi Zhongjie. Spatio-temporal variations in drought with remote sensing from the Mongolian Plateau during 1982-2018[J]. Chinese Geographical Science, 2020, 30(6):1081-1094. |
[13] | 毛军. 柴达木盆地香日德绿洲灌溉对地下水的影响及生态响应研究[D]. 北京: 北京林业大学, 2007. |
[13] | [ Mao Jun. Study on the Impact of Irrigation on Groundwater and its Ecological Response of Xiangride Oasis in Qaidum Basin[D]. Beijing: Beijing Forestry University, 2007. ] |
[14] | 王发科, 雷玉红, 都占良, 等. 气候变化对柴达木盆地主要农作物产量的影响[J]. 中国农学通报, 2020, 36(14):107-112. |
[14] | [ Wang Fake, Lei Yuhong, Du Zhanliang, et al. Climate change affects major crops’yield in Qaidam Basin[J]. Chinese Agricultural Science Bulletin, 2020, 36(14):107-112. ] |
[15] | 张家好. 香日德-诺木洪山前平原地区地下水资源评价[D]. 北京: 中国地质大学, 2013. |
[15] | [ Zhang Jiahao. Groundwater Resource Evaluation of Xiangride-Nuomuhong Piedmont Plain[D]. Beijing: China University of Geosciences, 2013. ] |
[16] | 朱明帮. 基于3S技术的都兰县土地利用变化及枸杞地光谱识别研究[D]. 青海: 青海大学, 2017. |
[16] | [ Zhu Mingbang. Study on Land Use Change and Spectral Recognition of Lycium barbarum L. Area Based on “3S” Technique in Dulan County[D]. Qinghai: Qinghai University, 2017. ] |
[17] | 肖洋, 张翔, 朱才荣, 等. 土壤湿度动态变化研究进展[J]. 中国农村水利水电, 2014, 56(12):9-12, 16. |
[17] | [ Xiao Yang, Zhang Xiang, Zhu Cairong, et al. Research on the dynamics of soil moisture[J]. China Rural Water and Hydropower, 2014, 56(12):9-12, 16. ] |
[18] | Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2):213-224. |
[19] | 高雅, 王晓飞, 高懋芳, 等. 基于温度植被干旱指数的曲靖市干旱监测研究[J]. 中国农学通报, 2020, 36(9):37-45. |
[19] | [ Gao Ya, Wang Xiaofei, Gao Maofang, et al. Drought monitoring in Qujing based on temperature vegetation drought index[J]. Chinese Agricultural Science Bulletin, 2020, 36(9):37-45. ] |
[20] | 叶伟林, 周自强, 石三娥, 等. 基于TVDI的甘肃黑方台土壤湿度分布及影响因素分析[J]. 甘肃科学学报, 2020, 32(6):50-58. |
[20] | [ Ye Weilin, Zhou Ziqiang, Shi San’e, et al. Analysis of spatio-temporal distribution of soil moisture and influencing factors in Hei-fangtai area based on TVDI[J]. Journal of Gansu Sciences, 2020, 32(6):50-58. ] |
[21] | 徐建华. 现代地理学中的数学方法[M]. 第二版. 北京: 高等教育出版社, 2002. |
[21] | [ Xu Jianhua. Mathematical Modem Geography[M]. 2th Ed. Beijing: Higher Education Press, 2002. ] |
[22] | 王汉文, 原喜忠, 雷胜友, 等. 基于TVDI的不同土地类型土壤湿度趋势研究[J]. 河南理工大学学报(自然科学版), 2020, 39(5):50-60. |
[22] | [ Wang Hanwen, Yuan Xizhong, Lei Shengyou, et al. Study on soil moisture trend of different land types based on TVDI[J]. Journal of Henan Polytechnic University(Natural Science), 2020, 39(5):50-60. ] |
[23] | 杨茹, 高超, 查芊郁, 等. 不同植被指数在基于TVDI方法反演土壤水分中的应用[J]. 测绘与空间地理信息, 2020, 43(2):33-37. |
[23] | [ Yang Ru, Gao Chao, Zha Qianyu, et al. Application of different vegetation indexes in soil moisture inversion based on TVDI[J]. Geomatics & Spatial Information Technology, 2020, 43(2):33-37. ] |
[24] | 李彩瑛, 阎建忠, 刘林山, 等. 基于TVDI的羌塘高原夏季土壤湿度变化分析[J]. 地理研究, 2017, 36(11):2101-2111. |
[24] | [ Li Caiying, Yan Jianzhong, Liu Linshan, et al. Analysis of soil moisture variation in summer of Qiangtang Plateau based on TVDI[J]. Geographical Research, 2017, 36(11):2101-2111. ] |
[25] | 吴英杰, 全强, 陈晓俊, 等. 2000—2018年锡林郭勒地区干旱时空变化及其气候响应[J]. 干旱区地理, 2020, 43(5):1289-1297. |
[25] | [ Wu Yingjie, Quan Qiang, Chen Xiaojun, et al. Temporal and spatial variations of drought and climatic response in the Xilingol grassland from 2000 to 2018[J]. Arid Land Geography, 2020, 43(5):1289-1297. ] |
[26] | 张斯琦. 2000—2015年柴达木盆地植被覆盖度时空变化及其与环境因子的关系[D]. 河北: 河北师范大学, 2019. |
[26] | [ Zhang Siqi. Spatial and Temporal Variation of Fractional Vegetation Cover and Its Relationship with Environmental Factors in Qaidam Basin during 2000-2015[D]. Hebei: Hebei Normal University, 2019. ] |
[27] | 钟祥浩, 刘淑珍. 中国山地分类研究[J]. 山地学报, 2014, 32(2):129-140. |
[27] | [ Zhong Xianghao, Liu Shuzhen. Research on the mountain classification in China[J]. Mountain Research, 2014, 32(2):129-140. ] |
[28] | 覃艺, 张廷斌, 易桂花, 等. 2000年以来内蒙古生长季旱情变化遥感监测及其影响因素分析[J]. 自然资源学报, 2021, 36(2):459-475. |
[28] | [ Qin Yi, Zhang Tingbin, Yi Guihua, et al. Remote sensing monitoring and analysis of influencing factors of drought in Inner Mongolia growing season since 2000[J]. Journal of Natural Resources, 2021, 36(2):459-475. ] |
/
〈 | 〉 |