植物与植物生理

3种滨河植物单根抗拉特性与其微观结构关系

展开
  • 1.青海大学地质工程系,青海 西宁 810016
    2.青藏高原北缘新生代资源环境重点实验室,青海 西宁 810016
张玉(1997-),女,硕士研究生,研究方向为地质灾害防治及河流生态. E-mail: 1960974194@qq.com

收稿日期: 2021-07-06

  修回日期: 2021-09-11

  网络出版日期: 2022-03-30

基金资助

国家自然科学基金项目(42062019);国家自然科学基金项目(41762023);国家自然科学基金项目(42002283);青海省科技厅项目(2021-ZJ-927)

Relationship between tensile properties and microstructure of single root of three riparian plants

Expand
  • 1. Department of Geological Engineering, Qinghai University, Xining 810016, Qinghai, China
    2. Key Laboratory of Cenozoic Resource & Environment in Northern Margin of the Tibetan Plateau, Xining 810016, Qinghai, China

Received date: 2021-07-06

  Revised date: 2021-09-11

  Online published: 2022-03-30

摘要

为分析黄河源区高寒草甸植物单根的抗拉力学性质及其护岸的微观力学机理,以华扁穗草、线叶嵩草和金露梅3种优势滨河植物为研究对象,通过开展单根拉伸试验和石蜡切片试验,定量分析3种植物单根力学特性及其与微观结构的关系。结果表明,当根径在<0.5 mm、0.5~1.0 mm和>1.0 mm 3个根径级别时,3种植物单根抗拉力和延伸率均随根径增大而增大;单根抗拉强度和杨氏模量均随根径增大而减小;根系应力-应变曲线表现为单峰曲线。灌木金露梅单根平均抗拉强度是草本植物华扁穗草和线叶嵩草的1.56倍和1.25倍,华扁穗草单根平均延伸率是线叶嵩草和金露梅的1.06倍和1.36倍。草本植物单根抗拉强度主要与其维管柱面积占比有关;而灌木金露梅单根抗拉强度主要与其周皮和次生木质部面积占比有关。综合来看,华扁穗草和线叶嵩草根系抵抗变形的能力较强,主要发挥加筋和减缓河岸变形、破坏的作用;而金露梅刚度强、抗拉强度较大,主要发挥固土护岸的作用。研究结果可为筛选黄河源区优势护岸植物提供科学依据。

本文引用格式

张玉,朱海丽,张珂,李国荣,刘亚斌 . 3种滨河植物单根抗拉特性与其微观结构关系[J]. 干旱区研究, 2022 , 39(2) : 572 -583 . DOI: 10.13866/j.azr.2022.02.24

Abstract

We aimed to analyze the tensile properties of single roots and the micromechanical mechanism of revetment by three dominant alpine meadow plants (Blysmus sinocompressus, Kobresia capillifolia, and Potentilla fruticose) in the source area of the Yellow River. The mechanical properties of single roots of these three plants and their relationship with microstructure were quantitatively analyzed through a single root tensile test and paraffin section test. As the root diameter increased (from less than 0.5 mm, 0.5-1.0 mm, to greater than 1.0 mm), the single root tensile resistance and elongation increased, whereas the single root tensile strength and Young’s modulus decreased. The tensile stress-strain curve for single roots followed a single peak curve trend. The average tensile strength of the single roots of Potentilla fruticose shrubs was 1.56 and 1.25 times greater than that of the cyperaceous Blysmus sinocompressus and Kobresia capillifolia, repsectively, whereas the average single root elongation of Blysmus sinocompressus was 1.06 and 1.36 times greater than that of Kobresia capillifolia and Potentilla fruticose, respectively. The single root tensile strength of cyperaceous plants was mainly related to the vascular column area ratio, whereas the single root tensile strength of Potentilla fruticose shrubs was closely related to the proportion of epidermis and secondary xylem. The ability to resist root system deformation in Blysmus sinocompressus and Kobresia capillifolia was stronger than that of Potentilla fruticose; therefore, these two cyperaceae plants play a role in reinforcing the soil, and slowing down the speed of deformation and failure of the river bank. Moroever, the stiffness and tensile strength of the Potentilla fruticose root system were higher, which play a role in soil consolidation and bank protection. Our results provide scientific support for screening the dominant revetment species in the source region of the Yellow River.

参考文献

[1] 朱海丽, 胡夏嵩, 李志威, 等. 黄河源区弯曲河道草甸型植被分布特征[J]. 泥沙研究, 2018, 43(1):58-65.
[1] [ Zhu Haili, Hu Xiasong, Li Zhiwei, et al. Zoning characteristics and processes in convex bank of meander reaches with riparian meadow in source region of the Yellow River[J]. Journal of Sediment Research, 2018, 43(1):58-65. ]
[2] 李志威, 郭楠, 胡旭跃, 等. 基于BSTEM模型的黄河源草甸型弯曲河流崩岸过程模拟[J]. 应用基础与工程科学学报, 2019, 27(3):509-519.
[2] [ Li Zhiwei, Guo Nan, Hu Xuyue, et al. Modeling of bank failure processes of meadow-type meandering river using BSTEM in the Yellow River Source[J]. Journal of Basic Science and Engineering, 2019, 27(3):509-519. ]
[3] 赵业安, 周文浩. “黄河下游河道演变基本规律”研究综述[J]. 人民黄河, 1996, 48(9):4-9, 61.
[3] [ Zhao Ye’an, Zhou Wenhao. Summary on “Basic development law and prospect prediction of the lower reaches of the Yellow River”[J]. Yellow River, 1996, 48(9):4-9, 61. ]
[4] 党祥. 二元结构河岸崩塌机理试验研究[D]. 武汉: 长江科学院, 2012.
[4] [ Dang Xiang. Experimental Study on Mechanism of Two-Layer-Composition Bank Failure[D]. Wuhan: Changjiang River Scientific Research Institute, 2012. ]
[5] Zhu Haili, Hu Xiasong, Li Zhiwei, et al. The influences of riparian vegetation on bank failures of a small meadow-type meandering river[J]. Water, 2018, 10, 692-706.
[6] 朱海丽, 李志威, 胡夏嵩, 等. 黄河源草甸型弯曲河流的悬臂式崩岸机制[J]. 水利学报, 2015, 46(7):836-843.
[6] [ Zhu Haili, Li Zhiwei, Hu Xiasong, et al. Cantilever bank failure mechanism of meadow meandering river in the Yellow River source region[J]. Journal of Hydraulic Engineering, 2015, 46(7):836-843. ]
[7] Simon A, Collison A J C. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability[J]. Earth Surface Processes Landforms, 2002, 27(5):527-546.
[8] Pollen N, Simon A. Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story?[J]. Geomorphology, 2010, 116:353-362.
[9] 杨树青, 白玉川, 徐海珏, 等. 河岸植被覆盖影响下的河流演化动力特性分析[J]. 水利学报, 2018, 49(8):995-1006.
[9] [ Yang Shuqing, Bai Yuchuan, Xu Haijue, et al. Dynamic characteristics of river evolution under the influence of riparian vegetation cover[J]. Journal of Hydraulic Engineering, 2018, 49(8):995-1006. ]
[10] Cheng Liu, An Liu, Yun He, et al. Migration rate of river bends estimated by tree ring analysis for a meandering river in the source region of the Yellow River[J]. International Journal of Sediment Research, 2021, 36(5):593-601.
[11] Guo Anyu, Li Zhiwei, Yang Hanyuan, et al. Effects of riparian plant roots on the unconsolidated bank stability of meandering channels in the Tarim River, China[J]. Geomorphology, 2020, 351:106958.
[12] 王文颖, 王启基. 高寒嵩草草甸退化生态系统植物群落结构特征及物种多样性分析[J]. 草业学报, 2001, 12(3):8-14.
[12] [ Wang Wenying, Wang Qiji. The structure and plant species diversity of the degraded ecosystems in alpine Kobresia meadow[J]. Acta Prataculturae Sinica, 2001, 12(3):8-14. ]
[13] 申紫雁, 刘昌义, 胡夏嵩, 等. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究[J]. 干旱区研究, 2021, 38(2):392-401.
[13] [ Shen Ziyan, Liu Changyi, Hu Xiasong, et al. Relationship between the physical and chemical properties of soil and the shear strength of root-soil composite system at different soil depths in alpine grassland in the source region of the Yellow River[J]. Arid Zone research, 2021, 38(2):392-401. ]
[14] 付江涛, 李晓康, 刘昌义, 等. 基于统计理论的青海河南县地区5种草本植物根系力学特性研究[J]. 工程地质学报, 2020, 28(6):1147-1159.
[14] [ Fu Jiangtao, Li Xiaokang, Liu Changyi, et al. Statistics of mechanical characteristics of five herb roots standing in henan region of Qinghai Province[J]. Journal of Engineering Geology, 2020, 28(6):1147-1159. ]
[15] 刘亚斌, 胡夏嵩, 余冬梅, 等. 西宁盆地黄土区草本和灌木组合根系分布特征及其增强土体抗剪强度效应[J]. 工程地质学报, 2020, 28(3):471-481.
[15] [ Liu Yabin, Hu Xiasong, Yu Dongmei, et al. Distribution characteristics of combined herb and shrub roots in loess area of Xining Basin and their effect on enhancing soil shear strength[J]. Journal of Engineering Geology, 2020, 28(3):471-481. ]
[16] 许桐, 刘昌义, 胡夏嵩, 等. 西宁盆地黄土区荷载条件下植被护坡力学效应[J]. 农业工程学报, 2021, 37(2):142-151.
[16] [ Xu Tong, Liu Changyi, Hu Xiasong, et al. Mechanical effects of vegetation protection on slope under loading conditions in loess area of Xining Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2):142-151. ]
[17] 周林虎, 杨幼清, 胡夏嵩, 等. 高寒矿区排土场边坡土体抗剪强度特征[J]. 煤田地质与勘探, 2019, 47(6):144-152.
[17] [ Zhou Linhu, Yang Youqing, Hu Xiasong, et al. Shear strength characteristics of slope soil in dumping site in high-cold mining area[J]. Coal Geology & Exploration, 2019, 47(6):144-152. ]
[18] 刘国彬. 黄土高原草地土壤抗冲性及其机理研究[J]. 土壤侵蚀与水土保持学报, 1998, 12(1):94-97.
[18] [ Liu Guobin. Study on soil anti-scourability and its mechanism of grassland on the loess plateau[J]. Journal of Soil Erosion and Soil and Water Conservation, 1998, 12(1):94-97. ]
[19] Alexia Stokes, Claire Atger, Anthony G B, et al. Desirable plant root traits for protecting natural and engineered slopes against landslides[J]. Plant and Soil, 2009, 324(1-2):1-30.
[20] Capilleri P P, Motta E, Raciti E. Experimental study on native plant root tensile strength for slope stabilization[J]. Procedia Engineering, 2016, 158(4):116-121.
[21] Perti F, Giadrossich F. Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.)[J]. Hydrology and Earth System Sciences Discussions, 2009, 6(3):1713-1726.
[22] 刘亚斌, 李淑霞, 余冬梅, 等. 西宁盆地黄土区典型草本植物单根抗拉力学特性试验[J]. 农业工程学报, 2018, 34(15):157-166.
[22] [ Liu Yabin, Li Shuxia, Yu Dongmei, et al. Experiment on single root tensile mechanical properties of typical herb species in loess region of Xining Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15):157-166. ]
[23] 周林虎, 徐志闻, 周国英, 等. 青藏铁路沱沱河段取土场草本根系力学强度试验[J]. 干旱区研究, 2020, 37(5):1353-1361.
[23] [ Zhou Linhu, Xu Zhiwen, Zhou Guoying, et al. Mechanics strength test of herb roots on the earth-borrowed area of Tuotuohe River section of the Qinghai-Tibet railway[J]. Arid Zone Research, 2020, 37(5):1353-1361. ]
[24] 蒋坤云, 陈丽华, 盖小刚, 等. 华北护坡阔叶树种根系抗拉性能与其微观结构的关系[J]. 农业工程学报, 2013, 29(3):115-123.
[24] [ Jiang Kunyun, Chen Lihua, Gai Xiaogang, et al. Relationship between tensile properties and microstructures of three different broadleaf tree roots in North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3):115-123. ]
[25] 李可, 朱海丽, 宋路, 等. 青藏高原两种典型植物根系抗拉特性与其微观结构的关系[J]. 水土保持研究, 2018, 25(2):240-249.
[25] [ Li Ke, Zhu Haili, Song Lu, et al. Relationship between tensile properties and microstructure of two typical plants in the Qinghai-Tibet Plateau[J]. Research of Soil and Water Conservation, 2018, 25(2):240-249. ]
[26] 李思诗. 崩岗侵蚀劣地草本植物根系抗拉特性与微观性质的关系[D]. 福州: 福建农林大学, 2018.
[26] [ Li Sishi. Relationship between Tensile Properties and Microscopic Properties of Herbaceous Plant Roots in Benggang Area[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. ]
[27] 朱海丽, 胡夏嵩, 毛小青, 等. 护坡植物根系力学特性与其解剖结构关系[J]. 农业工程学报, 2009, 25(5):40-46.
[27] [ Zhu Haili, Hu Xiasong, Mao Xiaoqing, et al. Relationship between mechanical characteristics and anatomical structures of slope protection root plants[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(5):40-46. ]
[28] 青海省地质矿产局. 青海省区域地质[M]. 北京: 地质出版社, 1991.
[28] [Qinghai Bureau of Geology and Mineral Resources. Regional Geology of Qinghai Province[M]. Beijing: Geological Publishing House, 1991. ]
[29] 张玉珍, 张小月, 杨举. 基于信息方法的青海省各地区气温及降水数据变点分析与建模[C]// 2015年(第四届)全国大学生统计建模大赛论文. 中国统计教育学会, 2015: 22.
[29] [ Zhang Yuzhen, Zhang Xiaoyue, Yang Ju. Analysis and modeling of temperature and precipitation data in Qinghai Province based on information method[C]// 2015 (4th) National University Student Statistical Modeling Contest Paper. China Statistical Education Association, 2015: 22. ]
[30] 谢彬山, 朱海丽, 李本锋, 等. 黄河源区曲流滨河植被空间分布与土壤特性关系研究[J]. 泥沙研究, 2019, 44(6):66-73.
[30] [ Xie Binshan, Zhu Haili, Li Benfeng, et al. Study on relationship between vegetation spatial distribution and soil properties in the meander riverside in source region of the Yellow River[J]. Journal of Sediment Research, 2019, 44(6):66-73. ]
[31] 李长暄. 林木单根力学性能及其影响因素研究[D]. 北京: 北京林业大学, 2014.
[31] [ Li Changxuan. The Research of Mechanical Property of Tree Root and its Influence Factors[D]. Beijing: Beijing Forestry University, 2014. ]
[32] 徐文秀, 杨玲, 鲍玉海, 等. 大型水库消落带2种典型耐淹草本植物单根抗拉力学特性[J]. 水土保持研究, 2020, 27(5):259-264, 272.
[32] [ Xu Wenxiu, Yang Ling, Bao Yuhai, et al. Tensile mechanical properties single root of two typical flood-tolerant Herbs in the reservoir riparian zone[J]. Research of Soil and Water Conservation, 2020, 27(5):259-264, 272. ]
[33] 李正理. 植物制片技术[M]. 北京: 北京科学出版社, 1987.
[33] [ Li Zhengli. Plant Production Technology[M]. Beijing: Beijing Science Press, 1987. ]
[34] 王萍花, 陈丽华, 冀晓东, 等. 4种常见乔木单根拉伸的应力应变曲线分析[J]. 水土保持通报, 2012, 32(3):17-22.
[34] [ Wang Pinghua, Chen Lihua, Ji Xiaodong, et al. Analysis of stress strain curves for four common arbor root systems[J]. Bulletin of Soil and Water Conservation, 2012, 32(3):17-22. ]
[35] 张超波. 林木根系固土护坡力学基础研究[D]. 北京: 北京林业大学, 2011.
[35] [ Zhang Chaobo. Fundamental and Mechanical Study on Soil Reinforcement and Slope Protection by Woody Plant Roots[D]. Beijing: Beijing Forestry University, 2011. ]
[36] 周朔. 林木根系拉伸力学特性研究[D]. 北京: 北京林业大学, 2011.
[36] [ Zhou Shuo. Study on Tensile Mechanical Characteristics of Root System[D]. Beijing: Beijing Forestry University, 2011. ]
文章导航

/