土壤资源

准噶尔东部地区3种土壤类型137Cs与土壤颗粒的关系

展开
  • 1.新疆大学资源与环境科学学院,新疆 乌鲁木齐 830046
    2.核工业二一六大队,新疆 乌鲁木齐 830011
杨建军(1978-),男,副教授,主要从事水土保持与荒漠化防治研究. E-mail: yjj@xju.edu.cn

收稿日期: 2020-08-14

  修回日期: 2020-09-24

  网络出版日期: 2022-03-30

基金资助

国家自然科学基金项目(41661057)

Relationship between 137Cs and soil particles in the main soil types in the eastern Jungar Basin

Expand
  • 1. College of Resources and Environment Science, Xinjiang University, Urumqi 830046, Xinjiang, China
    2. Geology Party No. 216, CNNC, Urumqi 830011, Xinjiang, China

Received date: 2020-08-14

  Revised date: 2020-09-24

  Online published: 2022-03-30

摘要

为更加深入地了解土壤颗粒对137Cs分布的影响,选取新疆准噶尔东部地区沙土、灰棕漠土和灰漠土3种主要的土壤类型,探讨不同土壤类型及自然地理环境条件下137Cs与土壤颗粒的关系。结果表明:沙土、灰棕漠土和灰漠土均以>50 μm的颗粒占据主导地位,其占比介于51.35%~90.22%,中值粒径(D50)表现出风沙土>灰棕漠土>灰漠土的趋势;灰棕漠土 137Cs质量活度变化范围为0.32~15.70 Bq·kg-1,其土壤剖面分布与<2 μm和2~5 μm的土壤颗粒具有较强的一致性;风沙土 137Cs比活度的分布分别与>50 μm土壤颗粒(0~14 cm)含量及D50剖面(0~12 cm)分布趋于一致,而灰漠土 137Cs比活度与各粒级土壤颗粒剖面并未表现出相同的变化趋势;风沙土和灰漠土中,对137Cs质量活度影响最大的均为2~5 μm粒级的土壤颗粒,而灰棕漠土中 137Cs受10~50 μm粒级土壤颗粒影响最大。准噶尔东部地区3种土壤类型 137Cs均与土壤颗粒存在密切关系,通过土壤剖面不同粒级土壤颗粒含量预测不同剖面137Cs质量活度具有一定参考价值。

本文引用格式

杨建军,王和平,王明力,关添泽 . 准噶尔东部地区3种土壤类型137Cs与土壤颗粒的关系[J]. 干旱区研究, 2022 , 39(2) : 477 -484 . DOI: 10.13866/j.azr.2022.02.15

Abstract

We selected three main soil types in the the eastern Jungar Basin, and explored the relationship between 137Cs and soil particles and natural geographic environment conditions to further understand the influence of soil particles on the distribution of 137Cs. The three soil types were dominated by soil particles > 50 μm, accounting for 51.35%-90.22% of the three soil types. The median particle size (D50) of aeolian sandy soil was greater than that of gray-brown desert soil, which was greater than that of gray desert soil. The range of 137Cs mass activity in gray-brown desert soil was 0.32-15.70 Bq·kg-1, The distribution of 137Cs specific activity in aeolian sandy soil is consistent with the particle content of soil >50 μm and the distribution of D50 profile, but the specific activity of 137Cs in gray desert soil followed a different trend from that of soil particles of various sizes. Among aeolian sand and gray desert soils, those with the greatest impact on the 137Cs mass activity were 2-5 μm soil particles, whereas 137Cs in the gray-brown desert soil were most affected by 10-50 μm soil particles. The content of soil particles in different grain fractions of the soil profile has certain reference value for predicting the mass activity of 137Cs in different profiles.

参考文献

[1] Mabit L, Meusburger K, Fulajtar E, et al. The usefulness of 137Cs as a tracer for soil erosion assessment: A critical reply to parsons and Foster[J]. Earth-Science Reviews, 2013, 137(3):300-307.
[2] Callegari G. Using 137Cs and 210Pbex measurements to investigate the sediment budget of a small forested catchment in southern Italy[J]. Hydrological Processes, 2013, 27(6):795-806.
[3] Porto P. Using plot experiments to test the validity of mass balance models employed to estimate soil redistribution rates from 137Cs and 210Pbex measurements[J]. Applied Radiation and Isotopes, 2012, 70(4):2451-2459.
[4] He Q, De W. Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments[J]. Journal of Environmental Radioactivity, 1996, 30(5):117-137.
[5] 余迪, 沙占江, 王求贵, 等. 青藏高原东北部草原区土壤137Cs和 210Pbex分布特征[J]. 干旱区资源与环境, 2018, 21(10):160-166.
[5] [ Yu Di, Sha Zhanjiang, Wang Qiugui, et al. Distribution characteristics of 137Cs and 210Pbex in soil of grassland region in the northeastern of Qinghai-Tibet Plateau[J]. Journal of Arid Land Resources and Environment, 2018, 21(10):160-166. ]
[6] 严平, 高尚玉, 董光荣. 土壤颗粒组成影响137Cs含量的初步实验结果[J]. 中国沙漠, 2002, 22(2):150-153.
[6] [ Yan Ping, Gao Shangyu, Dong Guangrong. Experimental results of the soil 137Cs activity as influenced by particle size[J]. Journal of Desert Research, 2002, 22(2):150-153. ]
[7] Meusburger K, Mabit L, Ketterer M. Park, et al. A multi-radionuclide approach to evaluate the suitability of 239+240Pu as soil erosion tracer[J]. Science of the Total Environment, 2016, 13(3):1489-1499.
[8] Pyuskyulyan K, Lamont S P, Atoyan V, et al. Altitude-dependent distribution of 137Cs in the environment: A case study of Aragats massif, Armenia[J]. Acta Geochimica, 2019, 43(6):132-139.
[9] 郑永春, 王世杰. 137Cs的土壤地球化学及其侵蚀示踪意义[J]. 水土保持学报, 2002, 16(2):57-61.
[9] [ Zheng Yongchun, Wang Shijie. Soil geochemistry characteristics of 137 Cs and its theory of tracing soil erosion[J]. Journal of Soil Water Conservation, 2002, 16(2):57-61. ]
[10] Xu Y, Pan S, Wu M, et al. Association of plutonium isotopes with natural soil particles of different size and comparison with 137Cs[J]. Science of The Total Environment, 2017, 13(7):541-549.
[11] 隋志龙, 杨浩, 杨九东, 等. 宁镇地区黄棕壤土壤颗粒组成与137Cs含量关系研究[J]. 水土保持学报, 2010, 24(5):157-162.
[11] [ Sui Zhilong, Yang Hao, Yang Jiudong, et al. Relationship between the soil particles composition and the 137Cs content using yellow-brown soil in Ningzhen region[J]. Journal of Soil and Water Conservation, 2010, 24(5):157-162. ]
[12] Nishimura M. Origin of stanols in young lacustrine sediments[J]. Soil Science of America Proceedings, 1977, 270(4):711-718.
[13] Zhang X B. Use of 137Cs measurements to investigate erosion and sediment sources within a small drainage basin in the Loess Plateau of China[J]. Hydrological Processes, 1989, 18(3):317-323.
[14] 赵烨, 岳建华, 徐翠华, 等. 137Cs示踪技术在滦河源区栗钙土风蚀速率估算中的应用[J]. 环境科学学报, 2005, 25(4) : 562-566.
[14] [ Zhao Ye, Yue Jianhua, Xu Cuihua, et al. Application of 137Cs tracer technique to estimate the wind erosion rate of castanozem in Luanhe River Source Area[J]. Acta Scientiae Circumstantiae, 2005, 25(4):562-566. ]
[15] 郭丽霞, 沙占江, 郭丽红, 等. 共和盆地塔拉滩土壤侵蚀潜在危险度的分级研究[J]. 干旱区资源与环境, 2013, 27(11):124-129.
[15] [ Guo Lixia, Sha Zhanjiang, Guo Lihong, et al. Gradation of potential soil erosion danger in Tala Shoal of Gong-he Basin[J]. Journal of Arid Land Resources and Environment, 2013, 27(11):124-129. ]
[16] 李仁英, 杨浩, 赵晓光, 等. 黄土高原区137Cs与土壤颗粒及有机质的关系研究[J]. 水土保持学报, 2003, 17(6):153-155.
[16] [ Li Renying, Yang Hao, Zhao Xiaoguang, et al. Study on relationship among 137Cs, soil particle and organic matter in loess plateau[J]. Journal of Soil Water Conservation, 2003, 17(6):153-155. ]
[17] 濮励杰, 韩书成, 金平华, 等. 红壤丘陵区土壤137Cs含量与土壤颗粒组成的关系研究——以江西省丰城市为例[J]. 水土保持通报, 2006, 26(4):11-15.
[17] [ Pu Lijie, Han Shucheng, Jin Pinghua, et al. Relationship between 137Cs content and composition of soil particles in red soil region: A case study of Fengcheng City, Jiangxi Province[J]. Journal of Soil Water Conservation, 2006, 26(4):11-15. ]
[18] 张婷婷, 曹月娥, 卢刚, 等. 准噶尔盆地东部土壤风蚀敏感性分级及其区划研究[J]. 干旱地区农业研究, 2017, 35(5):115-121.
[18] [ Zhang Tingting, Cao Yue’e, Lu Gang, et al. Study on the sensitivity classification and regionalization of soil wind erosion in Zhundong Area[J]. Agricultural Research in the Arid Areas, 2017, 35(5):115-121. ]
[19] 丁肇龙, 汪君, 胥鹏海, 等. 基于137Cs的新疆准东地区不同土地利用类型土壤风蚀特征研究[J]. 土壤, 2018, 50(2):398-403.
[19] [ Ding Zhaolong, Wang Jun, Xu Penghai, et al. Using 137Cs technique to study soil wind erosion of different land use types in eastern Junggar Basin, Xinjiang[J]. Soils, 2018, 50(2):398-403. ]
[20] Wei Y, Wu X, Cai C. Splash erosion of clay-sand mixtures and its relationship with soil physical properties: The effects of particle size distribution on soil structure[J]. Catena, 2015, 13(5):254-262.
[21] 刘君洋, 王明力, 杨建军, 等. 基于MCM模型和137Cs的准东地区土壤侵蚀分析[J]. 干旱区研究, 2020, 37(5):1166-1173.
[21] [ Liu Junyang, Wang Mingli, Yang Jianjun, et al. Study on soil erosion in the East Junggar region based on MCM model and 137Cs[J]. Arid Zone Research, 2020, 37(5):1166-1173. ]
[22] 濮励杰, 包浩生, 彭补拙, 等. 137Cs应用于我国西部风蚀地区土地退化的初步研究——以新疆库尔勒地区为例[J]. 土壤学报, 1998, 35(4) : 441-449.
[22] [ Pu Lijie, Bao Haosheng, Peng Buzhuo, et al. A preliminary study on land degradation in Wind erosion area in western China: A case study of Kurla region in Xinjiang[J]. Acta Pedologica Sinic, 1998, 35(4):441-449. ]
[23] 石云峰, 谢添, 朱君, 等. 沉积物对137Cs的不可逆吸附行为[J]. 核电子学与探测技术, 2019, 39(1):77-82.
[23] [ Shi Yunfeng, Xie Tian, Zhu Jun, et al. Irreversible sorption behaviors of 137Cs in sediments[J]. Nuclear Electronics & Detection Technology, 2019, 39(1):77-82. ]
[24] Orlovsky L, Orlovsky N, Durdyev A. Duststorms in turkmenistan[J]. Journal of Arid Environment, 2005, 60(1):87-97.
[25] 胡云锋, 刘纪远, 庄大方, 等. 风蚀土壤剖面137Cs的分布及侵蚀速率的估算[J]. 科学通报, 2005, 50(9):933-937.
[25] [ Hu Yunfeng, Liu Jiyuan, Zhuang Dafang, et al. Distribution of 137Cs in wind-eroded soil profile and estimation of erosion rate[J]. Chinese Science Bulletin, 2005, 50(9):933-937. ]
[26] 陈思宇, 魏欣, 韩玥, 等. 137Cs在土壤中淋溶迁移的模拟试验[J]. 北京师范大学学报(自然科学版), 2016, 52(5):635-638.
[26] [ Chen Siyu, Wei Xin, Han Yue, et al. 137Cs movements in soil[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(5):635-638. ]
[27] 张婷婷. 准东地区土壤颗粒分形研究及其风蚀量估算[D]. 乌鲁木齐: 新疆大学, 2017.
[27] [ Zhang Tingting. Study on Fractal of Soil Particles and Estimation on Wind Erosion Amount in Zhundong Area[D]. Urumqi: Xinjiang University, 2017. ]
[28] 周颖. 新疆准东矿区土壤风蚀研究[D]. 乌鲁木齐: 新疆大学, 2016.
[28] [ Zhou Ying. Research of Soil Wind Erosion in Zhundong of Xinjiang[D]. Urumqi: Xinjiang University, 2016. ]
[29] 艾克拜尔·伊拉洪, 贾宏涛, 吐尔逊·吐尔洪, 等. 137Cs在灌耕灰棕漠土腐殖质各组分的分布[J]. 核农学报, 2011, 25(2):325-330.
[29] [ Aikebaier Yilahong, Jia Hongtao, Tuerxun Tuerhong, et al. Simulation study on 137Cs distribution in the each component of irrigation farmyard-grey-brown desert soil humus[J]. Journal of Nuclear Agricultural Sciences, 2011, 25(2):325-330. ]
[30] 李勇, 耿肖臣, 于寒青, 等. 标准物质对HPGe γ谱仪测定环境放射性核素 210Pb和137Cs的影响[J]. 核农学报, 2010, 24(6):1249-1254.
[30] [ Li Yong, Geng Xiaochen, Yu Hanqing, et al. Determination of environmental radionuclides 210Pb and 137Cs using HPGe γ-spectrometry as influenced by different standard reference materials[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(6):1249-1254. ]
文章导航

/