水资源及其利用

苏干湖湿地与奎屯诺尔湿地之间水力联系研究

展开
  • 1.甘肃省地下水工程及地热资源重点实验室,甘肃省地质环境监测院,甘肃 兰州 730050
    2.甘肃省地质矿产勘查开发局水文地质工程地质勘察院,甘肃 张掖 734000
李平平(1990-),男,工程师,主要从事水文水资源调查评价. E-mail: Xiaopingcumt@163.com

收稿日期: 2021-10-19

  修回日期: 2022-01-07

  网络出版日期: 2022-03-30

基金资助

甘肃省地下水工程及地热资源重点实验室开放基金项目(甘地实201902);甘肃省地下水工程及地热资源重点实验室开放基金项目(甘地实201903)

Study on the hydraulic connection between the Sugan Lake Wetland and the Kuitunnuoer Wetland

Expand
  • 1. Gansu Province Key Laboratory of Groundwater Engineering and Geothermal Resources, Geological Environment Monitoring Institute of Gansu, Lanzhou 730050, Gansu, China
    2. Institute of Hydrologic and Engineering Geologic Survey, Gansu Province Bureau of Geology and Mineral Exploration and Development, Zhangye 734000, Gansu, China

Received date: 2021-10-19

  Revised date: 2022-01-07

  Online published: 2022-03-30

摘要

选择位于柴达木西北部苏干湖盆地苏干湖湿地和奎屯诺尔湿地作为研究对象,采用氢氧同位素、地下水动态、地球物理勘探及遥感解译技术与方法,对苏干湖湿地与奎屯诺尔湿地之间的水力联系进行了研究。结果表明:(1) 苏干湖湿地地下水主要接受大气降水和侧向径流补给,奎屯诺尔湿地地下水主要接受阿尔金山冰川融水通过地下径流补给;(2) 苏干湖湿地与奎屯诺尔湿地之间的青石沟洪积扇存在阻水断层,为不同的水文地质单元,无地下水力联系。研究成果为该流域水资源可持续发展利用提供理论依据和科学支撑。

本文引用格式

李平平,王晓丹,陈海龙 . 苏干湖湿地与奎屯诺尔湿地之间水力联系研究[J]. 干旱区研究, 2022 , 39(2) : 429 -435 . DOI: 10.13866/j.azr.2022.02.10

Abstract

The Sugan Lake Wetland and Kuitunnuoer Wetland selected as the research objects are located in the Sugan Lake Basin in the Northwest of the Qaidam Basin. Technologies and methods of hydrogen and oxygen isotope, groundwater dynamics, geophysical exploration and remote sensing interpretation were used to study the hydraulic connection between the Sugan Lake Wetland and the Kuitunnuoer Wetland. The results showed that the groundwater of the Sugan Lake Wetland was mainly supplied by atmospheric precipitation and lateral runoff. In contrast, the meltwater from the Altun Mountains glacier supplied that of the Kuitunnuoer Wetland through underground runoff. Furthermore, the alluvial fans of Qingshigou between the Sugan Lake Wetland and the Kuitunnuoer Wetland have faults that behave as aquicludes, which is a different hydrogeological unit and has no underground hydraulic interaction. Therefore, the research results provide a theoretical basis and scientific support for the sustainable development and usage of water resources in the basin.

参考文献

[1] 崔玉环, 王杰, 刘友存, 等. 长江下游沿江升金湖河湖过渡带地下水来源及水质影响因素分析[J]. 湖泊科学, 2021, 33(5):1448-1457.
[1] [ Cui Yuhuan, Wang Jie, Liu Youcun, et al. Groundwater sources and the influencing factors on water quality in the river-lake transition zone of Lake Shengjin, lower reaches of the Yangtze River[J]. Journal of Lake Sciences, 2021, 33(5):1448-1457. ]
[2] 余钟波, 李敏娟, 刘芸辰, 等. 基于氡同位素的河水与地下水水力交换研究[J]. 河海大学学报(自然科学版), 2020, 48(1):8-13.
[2] [ Yu Zhongbo, Li Minjuan, Liu Yunchen, et al. Study on hydraulic exchange of river water and groundwater based on radon isotope[J]. Journal of Hohai University(Natural Sciences Edition), 2020, 48(1):8-13. ]
[3] 张健健, 李成英, 吕君山. 青海民和甘河流域水力联系及地下水的更新能力识别[J]. 青海大学学报, 2020, 38(6):85-92, 100.
[3] [ Zhang Jianjian, Li Chengying, Lyu Junshan. Hydraulic connection and groundwater self-renewing of the Gan river basin in Minhe county of Qinghai Province[J]. Journal of Qinghai University, 2020, 38(6):85-92, 100. ]
[4] 陈浩, 王家鼎, 叶进霞. 山东省汶泗河冲洪积平原孔隙含水层层间水力联系研究[J]. 水文, 2020, 40(3):82-87.
[4] [ Chen Hao, Wang Jiading, Ye Jinxia. Study on inter-layers hydraulic connection of porous aquifers in the Wensihe River alluvial flood plain in Shandong Province[J]. Journal of China Hydrology, 2020, 40(3):82-87. ]
[5] 赵宝峰, 吕玉广. 基于底板砂岩含水层放水试验的多含水层水力联系研究[J]. 煤矿安全, 2020, 51(12):34-39.
[5] [ Zhao Baofeng, Lyu Yuguang. Study on hydraulic connection of multiple aquifers based on dewatering test of sandstone aquifer from floor[J]. Safety in Coal Mines, 2020, 51(12):34-39. ]
[6] 李长安, 张玉芬, 李国庆, 等. 武汉东湖是如何形成的[J]. 地球科学, 2021, 46(12):4562-4572.
[6] [ Li Changan, Zhang Yufen, Li Guoqing, et al. The formation of the East Lake, Wuhan, eastern China[J]. Earth Science, 2021, 46(12):4562-4572. ]
[7] 李影, 刘康, 高艳, 等. 引哈济党工程对苏干湖湿地天然植被的影响[J]. 环境监测管理与技术, 2018, 30(2):61-64.
[7] [ Li Ying, Liu Kang, Gao Yan, et al. Influence of the Yinhajidang Project on the natural vegetation in Sugan Lake Wetland[J]. The Administration and Technique of Environmental Monitoring, 2018, 30(2):61-64. ]
[8] 康满萍, 赵成章, 白雪. 苏干湖湿地土壤全盐含量空间异质性及影响因素[J]. 生态学报, 2021, 41(6):2282-2291.
[8] [ Kang Manping, Zhao Chengzhang, Bai Xue. Spatial heterogeneity and influencing factors of total soil salinity in Sugan Lake Wetland[J]. Acta Ecologica Sinica, 2021, 41(6):2282-2291. ]
[9] 赵旭东, 赵俊峰, 郭泽清, 等. 苏干湖地区与柴北缘侏罗系原始沉积关系探讨[J]. 地质论评, 2018, 64(5):1105-1117.
[9] [ Zhao Xudong, Zhao Junfeng, Guo Zeqing, et al. Discussion on the original sedimentary relationship between Suganhu area and Northern Qaidam Basin during Jurassic Period[J]. Geological Review, 2018, 64(5):1105-1117. ]
[10] 李雯霞, 张西营, 苗卫良, 等. 柴达木盆地北缘冷湖三号构造油田水水化学特征[J]. 盐湖研究, 2016, 24(2):12-18.
[10] [ Li Wenxia, Zhang Xiying, Miao Weiliang, et al. Hydrochemical charateristics of oilfield waters in Lenghu No. 3 structure area of North edge of Qaidam Basin[J]. Journal of Salt Lake Research, 2016, 24(2):12-18. ]
[11] 石国成, 张西营, 李永寿, 等. 柴达木盆地北缘冷湖四号构造油田水水化学组成及其分布特征[J]. 盐湖研究, 2016, 24(2):19-25.
[11] [ Shi Guocheng, Zhang Xiying, Li Yongshou, et al. Hydrochemical components and their distribution characteristics of oilfield waters in No. 4 structure of Lenghu, Qaidam Basin[J]. Journal of Salt Lake Research, 2016, 24(2):19-25. ]
[12] 陈贤春, 李启荣. 柴达木盆地西北部铀成矿水文地球化学条件分析[J]. 铀矿地质, 2001(6):348-353.
[12] [ Chen Xianchun, Li Qirong. Analysis of hydrogeochemical conditions of uranium metallogenesis in northwestern Chaigam Basin[J]. Uranium Geology, 2001(6):348-353. ]
[13] 喻生波, 屈君霞. 苏干湖盆地地下水氢氧稳定同位素特征及其意义[J]. 干旱区资源与环境, 2021, 35(1):169-175.
[13] [ Yu Shengbo, Qu Junxia. Characteristics and significance of stable hydrogen and oxygen isotopes in groundwater of Sugan Lake Basin[J]. Journal of Arid Land Resources and Environment, 2021, 35(1):169-175. ]
[14] 李平平, 王晓丹, 陈海龙. 甘肃苏干湖湿地土壤盐渍化、地下水位埋深及其对生态环境的影响[J]. 矿产勘查, 2020, 11(11):2555-2560.
[14] [ Li Pingping, Wang Xiaodan, Chen Hailong. Soil salinization, groundwater table depth in Suganhu Wetland, Gansu Province and their impacts on ecological environment[J]. Mineral Exploration, 2020, 11(11):2555-2560. ]
[15] 康满萍, 赵成章, 白雪, 等. 苏干湖湿地植被覆盖度时空变化格局[J]. 生态学报, 2020, 40(9):2975-2984.
[15] [ Kang Manping, Zhao Chengzhang, Bai Xue, et al. The temporal and spatial variation pattern of vegetation coverage in Suganhu Wetland[J]. Acta Ecologica Sinica, 2020, 40(9):2975-2984. ]
[16] 詹泸成, 陈建生, 张时音. 洞庭湖湖区降水-地表水-地下水同位素特征[J]. 水科学进展, 2014, 25(3):327-335.
[16] [ Zhan Lucheng, Chen Jiansheng, Zhang Shiyin. Characteristics of stable isotopes in precipitation, surface water and groundwater in the Dongting Lake region[J]. Advances in Water Science, 2020, 40(9):327-335. ]
[17] 李平平, 陈海龙. 地球物理勘探在地热勘查中的应用[J]. 矿产勘查, 2019, 10(4):938-942.
[17] [ Li Pingping, Chen Hailong. Application of geophysical exploration in geothermal exploration[J]. Mineral Exploration, 2019, 10(4):938-942. ]
[18] Meredith K T, Hollins S E, Hughes C E, et al. Temporal variation in stable isotopes(13O and 2H) and major ion concen-trations within the Darling River between Bourke and Wilcannia due to variable flows, saline groundwater influx and evaporation[J]. Joumal of Hydrology, 2009, 378:313-324.
[19] Li H C, Ku T L. δ13C-δ18O covariance as a paleohydrological indicator for closed-basin lakes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 133:69-80.
[20] 刘心彪, 周斌, 魏玉涛. 基于环境同位素的陇东盆地地下水分析[J]. 干旱区研究, 2009, 26(6):804-810.
[20] [ Liu Xinbiao, Zhou Bin, Wei Yutao. Analysis on groundwater based on environmental isotopes in the Longdong Basin[J]. Arid Zone Research, 2009, 26(6):804-810. ]
[21] 马斌, 梁杏, 靳孟贵, 等. 华北平原典型区水体蒸发氢氧同位素分馏特征[J]. 水科学进展, 2015, 26(5):639-648.
[21] [ Ma Bin, Liang Xing, Jin Menggui, et al. Characteristics of fractionation of hydrogen and oxygen isotopes in evaporating water in the typical region of the North China Plain[J]. Advances in Water Science, 2015, 26(5):639-648. ]
[22] 司志超, 高贤君, 杨元维, 等. 基于遥感监测方法的湖泊面积变化成因分析[J]. 测绘与空间地理信息, 2021, 44(4):125-127, 131.
[22] [ Si Zhichao, Gao Xianjun, Yang Yuanwei, et al. Cause analysis of change of lake area based on remote sensing monitoring method[J]. Geomatics & Spatial Information Technology, 2021, 44(4):125-127, 131. ]
文章导航

/