天气与气候

TIGGE降水预报在中国干旱半干旱地区的适用性评估

展开
  • 1.河海大学水文水资源与水利工程科学国家重点实验室,江苏 南京 210098
    2.河海大学水文水资源学院,江苏 南京 210098
    3.珠江水利委员会珠江水利科学研究院,广东 广州 510630
何超禄(1996-),男,硕士研究生,主要从事水文预报研究. E-mail: hechaolu2020@163.com

收稿日期: 2021-08-06

  修回日期: 2021-12-14

  网络出版日期: 2022-03-30

基金资助

国家重点研发项目(2019YFC1510504)

Assessment of TIGGE precipitation forecast models in arid and semi-arid regions of China

Expand
  • 1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, Jiangsu, China
    2. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, Jiangsu, China
    3. Pearl River Water Resources Research Institute, Pearl River Water Resources Commission, Guangzhou 510630, Guangdong, China

Received date: 2021-08-06

  Revised date: 2021-12-14

  Online published: 2022-03-30

摘要

TIGGE降水产品作为目前中短期集合预报最权威的数据集合的重要组成部分,其在中国干旱半干旱地区的适用性如何,还需要进一步探讨。基于中国干旱半干旱地区2015—2017年实测降水数据,采用平均绝对偏差、均方根误差、TS评分等指标,从降水量预报、降水分级预报、降水探测能力和空间预报精度等多角度出发,综合评估了TIGGE数据中心的ECMWF、JMA、KMA和UKMO 4种模式在研究区的预报效果。结果表明:(1) 4种模式对小雨的预报效果均较好,在进行不同降水量级预报时,JMA对于小雨的降水预报效果最佳,而对于其他降水量级的降水预报,4种模式无明显差别;(2) 针对日降水量预报,KMA效果最差,而ECMWF最精确;(3) 在不同降水阈值下对降水的探测能力评估结果显示,ECMWF更具优势,尤其在以25 mm·d-1为阈值时优势明显;(4) 空间预报精度检验结果显示,各模式在80°~100°E,35°~45°N范围表现最佳,主要是新疆中部以及新疆、甘肃和青海三省交界处,对比各模式之间,ECMWF表现更稳定,KMA则表现较差。

本文引用格式

何超禄,吕海深,朱永华,李文韬,谢冰绮,徐凯莉,刘名文 . TIGGE降水预报在中国干旱半干旱地区的适用性评估[J]. 干旱区研究, 2022 , 39(2) : 368 -378 . DOI: 10.13866/j.azr.2022.02.04

Abstract

Short- and medium-term precipitation forecast products are important to improve the prediction period and accuracy of flood forecasts. With global climate change, the prediction of precipitation patterns becomes increasingly complex and important. To date, there have been no available reports on the applicability of TIGGE precipitation products (a significant aspect of the most authoritative data set for short-and medium-term ensemble forecasts) in the arid and semi-arid regions of China. On the basis of precipitation data measured from 2015-2017 in arid and semi-arid regions of China, the mean absolute deviation, root mean square error, TS score, and other indicators were used to analyze the precipitation forecast, precipitation classification forecast, precipitation detection ability, and spatial prediction accuracy. The prediction effects of the ECMWF, JMA, KMA, and UKMO models in the TIGGE data center were evaluated comprehensively in the study area. The results show that the four models effectively forecast light rain. The JMA model has the best forecast efficacy for light rain at different precipitation levels; for other precipitation levels, no significant difference was seen between the four models. The KMA model performs the worst for the daily precipitation forecast, whereas the ECMWF model is the most accurate. The evaluation results of precipitation detection capabilities under different precipitation thresholds show that ECMWF is more advantageous, especially when the threshold is 25 mm·d-1. The spatial accuracy test results show that each model performs better in the range of 80°-100°E and 35°-45°N, mainly in central Xinjiang and at the junction of Xinjiang, Gansu, and Qinghai provinces. Out of all the models, the ECMWF model demonstrated the best performance and the KMA model the worst.

参考文献

[1] 智协飞, 黄闻. 基于卡尔曼滤波的中国区域气温和降水的多模式集成预报[J]. 大气科学学报, 2019, 42(2):197-206.
[1] [ Zhi Xiefei, Huang Wen. Multimodel ensemble forecasts of surface air temperature and precipitation over China by using Kalman filter[J]. Transactions of Atmospheric Sciences, 2019, 42(2):197-206. ]
[2] 王建群, 段蓉, 蔡晨凯. TIGGE模式在淮河水系史河流域的应用[J]. 河海大学学报(自然科学版), 2020, 48(1):14-21.
[2] [ Wang Jianqun, Duan Rong, Cai Chenkai. Application of TIGGE precipitation forecast in Shihe catchment of Huaihe River Basin[J]. Journal of Hohai University(Natural Sciences Edition), 2020, 48(1):14-21. ]
[3] 王海霞, 智协飞. 基于TIGGE多模式降水量预报的统计降尺度研究[J]. 气象科学, 2015, 35(4):430-437.
[3] [ Wang Haixia, Zhi Xiefei. Statistical downscaling research of precipitation forecast based on TIGGE multimodel ensemble[J]. Journal of the Meteorological Sciences, 2015, 35(4):430-437. ]
[4] 杜开连, 葛忆, 张佳丽, 等. 赤山湖流域TIGGE降水预报精度评价研究[J]. 江苏水利, 2020(7):48-51.
[4] [ Du Kailian, Ge Yi, Zhang Jiali, et al. Study on the evaluation of TIGGE precipitation forecast precision in Chishan Lake Catchment[J]. Jiangsu Water Resources, 2020(7):48-51. ]
[5] Amit B, Vinay K, Anjali S, et al. Application of multimodel superensemble technique on the TIGGE suite of operational models[J]. Geomatics, 2021, 1(1):81-91.
[6] Amini S, Azizian A, Arasteh P D. How reliable are TIGGE daily deterministic precipitation forecasts over different climate and topographic conditions of Iran?[J]. Meteorological Applications, 2021, 28(4):e2013, doi: 10.1002/met.2013.
[7] 张成军, 纪晓玲, 马金仁, 等. 多种数值预报及其释用产品在宁夏天气预报业务中的检验评估[J]. 干旱气象, 2017, 35(1):148-156.
[7] [ Zhang Chengjun, Ji Xiaoling, Ma Jingren, et al. Verification of numerical forecast and its application products in weather forecast in Ningxia[J]. Journal of Arid Meteorology, 2017, 35(1):148-156. ]
[8] 金君良, 舒章康, 陈敏, 等. 基于数值天气预报产品的气象水文耦合径流预报[J]. 水科学进展, 2019, 30(3):316-325.
[8] [ Jin Junliang, Shu Zhangkang, Chen Min, et al. Meteo-hydrological coupled runoff forecasting based on numerical weather prediction products[J]. Advances in Water Science, 2019, 30(3):316-325. ]
[9] 包红军, 王莉莉, 沈学顺, 等. 气象水文耦合的洪水预报研究进展[J]. 气象, 2016, 42(9):1045-1057.
[9] [ Bao Hongjun, Wang Lili, Shen Xueshun, et al. A review: Advances of flood forecasting of hydro-meteorological forecast technology[J]. Meteorological Monthly, 2016, 42(9):1045-1057. ]
[10] 雍燕兰, 杨云川, 赵铜铁钢. 水文集合预报检验指标调研及其在西江流域季节降水预报中的应用[J]. 水文, 2020, 40(6):31-39.
[10] [ Yong Yanlan, Yang Yunchuan, Zhao Tongtiegang, et al. Verification metrics of hydrological ensemble forecasts and their applications to seasonal precipitation forecasts of the Xijiang River Basin[J]. Journal of China Hydrology, 2020, 40(6):31-39. ]
[11] Patrice D, Jean-Luc M, Richard A. Hydrological ensemble forecasting using a multi-model framework[J]. Journal of Hydrology, 2021, 600:126537, doi: 10.1016/j.jhydrol.2021.126537.
[12] 殷志远, 王志斌, 李俊, 等. WRF模式与Topmodel模型在洪水预报中的耦合预报试验研究[J]. 气象学报, 2017, 75(4):672-684.
[12] [ Yin Zhiyuan, Wang Zhibin, Li Jun, et al. An experimental study on the prediction of flood using coupled WRF-Topmodel model[J]. Acta Meteorologica Sinica, 2017, 75(4):672-684. ]
[13] 刘章君, 郭生练, 许新发, 等. 贝叶斯概率水文预报研究进展与展望[J]. 水利学报, 2019, 50(12):1467-1478.
[13] [ Liu Zhangjun, Guo Shenglian, Xu Xinfa, et al. Bayesian probabilistic hydrological forecasting: Progress and prospects[J]. Journal of Hydraulic Engineering, 2019, 50(12):1467-1478. ]
[14] 雷晓辉, 王浩, 廖卫红, 等. 变化环境下气象水文预报研究进展[J]. 水利学报, 2018, 49(1):9-18.
[14] [ Lei Xiaohui, Wang Hao, Liao Weihong, et al. Advances in hydro-meteorological forecast under changing environment[J]. Journal of Hydraulic Engineering, 2018, 49(1):9-18. ]
[15] 舒章康, 汪琳, 金君良, 等. TIGGE多模式降水预报产品检验与集成研究[J]. 水利水运工程学报, 2021(2):10-19.
[15] [ Shu Zhangkang, Wang Lin, Jin Junliang, et al. Verification and integration of TIGGE multimode precipitation forecast products[J]. Hydro-Science and Engineering, 2021(2):10-19. ]
[16] 赵琳娜, 吴昊, 田付友, 等. 基于TIGGE资料的流域概率性降水预报评估[J]. 气象, 2010, 36(7):133-142.
[16] [ Zhao Linna, Wu Hao, Tian Fuyou, et al. Assessment of probabilistic precipitation forecasts for the Huaihe Basin using TIGGE data[J]. Meteorological Monthly, 2010, 36(7):133-142. ]
[17] 杜雅玲, 陆桂华, 吴志勇, 等. 基于TIGGE数据的中期降水预报在江苏省的应用效果评估[J]. 南水北调与水利科技, 2017, 15(6):17-25, 44.
[17] [ Du Yaling, Lu Guihua, Wu Zhiyong, et al. Assessment of TIGGE medium-term precipitation forecast in Jiangsu Province[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(6):17-25, 44. ]
[18] 高艳红, 许建伟, 张萌, 等. 中国400 mm 等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11):1101-1112.
[18] [ Gao Yanhong, Xu Jianwei, Zhang Meng, et al. Advances in the study of the 400 mm isohyet migrations and wetness and dryness changes on the Chinese mainland[J]. Advances in Earth Science, 2020, 35(11):1101-1112. ]
[19] 陈庭兴, 吕海深, 朱永华. 基于GEV分布的西营河流域洪水特性分析[J]. 干旱区研究, 2021, 38(6):1563-1569.
[19] [ Chen Tingxing, Lyu Haishen, Zhu Yonghua. Analysis of flood characteristics in Xiying River Basin based on GEV distribution[J]. Arid Zone Research, 2021, 38(6):1563-1569. ]
[20] 王晓峰, 张明明, 尹礼唱, 等. 2000—2015年中国干旱半干旱地区沙漠化进程驱动力研究[J]. 生态环境学报, 2019, 28(5):948-957.
[20] [ Wang Xiaofeng, Zhang Mingming, Yin Lichang, et al. Study on the driving factors in desertification process in arid and semi-arid region of China from 2000 to 2015[J]. Ecology and Environmental Sciences, 2019, 28(5):948-957. ]
[21] 马洁华, 孙建奇, 汪君, 等. 2018年夏季我国极端降水及滑坡泥石流灾害预测[J]. 大气科学学报, 2019, 42(1):93-99.
[21] [ Ma Jiehua, Sun Jianqi, Wang Jun, et al. Real-time prediction for 2018 JJA extreme precipitation and landslides[J]. Transactions of Atmospheric Sciences, 2019, 42(1):93-99. ]
[22] 赵煜飞, 朱江. 近50年中国降水格点日值数据集精度及评估[J]. 高原气象, 2015, 34(1):50-58.
[22] [ Zhao Yufei, Zhu Jiang. Assessing quality of grid daily precipitation datasets in China in recent 50 years[J]. Plateau Meteorology, 2015, 34(1):50-58. ]
[23] 孙铭悦, 吕海深, 朱永华, 等. 2 套气象数据在资料缺乏地区的适用性评估——以呼图壁河流域为例[J]. 干旱区研究, 2022, 39(1):94-103.
[23] [ Sun Mingyue, Lyu Haishen, Zhu Yonghua, et al. Applicability assessment of two meteorological datasets in areas lacking data with the Hutubi River Basin as an example[J]. Arid Zone Research, 2022, 39(1):94-103. ]
[24] 赵琳娜, 包红军, 田付友, 等. 水文气象研究进展[J]. 气象, 2012, 38(2):147-154.
[24] [ Zhao Linna, Bao Hongjun, Tian Fuyou, et al. Advances in hydrometeorological research[J]. Meteorological Monthly, 2012, 38(2):147-154. ]
[25] Wilks D S. Statistical Methods in the Atmospheric Sciences[M]. USA: Academic Press: 2011: 301-394.
[26] 王在文, 梁旭东, 范水勇, 等. 数值模式降水评分对分辨率的敏感性初探[J]. 暴雨灾害, 2016, 35(1):10-16.
[26] [ Wang Zaiwen, Liang Xudong, Fan Shuiyong, et al. Impact of spatial resolution on precipitation forecast score in numerical weather prediction models[J]. Torrential Rain and Disasters, 2016, 35(1):10-16. ]
文章导航

/