植物与植物生理

断根与IBA处理对沙冬青根系质量及幼苗生长的影响

展开
  • 山西农业大学林学院,山西 太谷 030801
王晶晶(1996-),女,硕士研究生,主要从事森林资源培育研究. E-mail: wjj19214@163.com

收稿日期: 2021-06-25

  修回日期: 2021-09-11

  网络出版日期: 2022-01-24

基金资助

山西省自然科学基金项目(201901D111224)

Effects of root cutting and IBA treatment on the root quality and growth of Ammopiptanthus mongolicus seedlings

Expand
  • College of Forestry, Shanxi Agricultural University, Taigu 030801, Shanxi, China

Received date: 2021-06-25

  Revised date: 2021-09-11

  Online published: 2022-01-24

摘要

为解决沙冬青(Ammopiptanthus mongolicus)主根长、毛细根少,育苗生根困难、移栽成活率低的林业技术难题,该研究对不同发育程度沙冬青幼苗进行不同强度断根与不同浓度激素处理(IBA)添加,促根培养后测定并分析不同组合处理对沙冬青幼苗根系形态、根系质量及幼苗生长的影响,以探究沙冬青促根成活关键措施,为沙冬青育苗及造林技术提供基础依据。结果表明:(1) 断根可促进沙冬青多主根的发生,以及侧根、根总量、幼苗地上地下部分生物量、根冠比、根系活力和根系阳离子交换量(CEC)的增加。其中,幼苗根长达1.5~2.0 cm时断根尖0.5 cm(F2)处理显著促进侧根数、根尖数、分支数、苗木质量指数和根系活力的增加,且根系活力达到断根处理的峰值(较对照显著提高137.70%);根系CEC在根长达4.5~6.0 cm时断根长1/2(T3)处理时最佳。(2) 断根后激素的促根及幼苗生长作用进一步提高。其中,根长1.5~2.0 cm时断根尖0.5 cm+0.075 mg·L-1 IBA/0.125 mg·L-1 IBA(即P3、P4)处理后根系形态指标(除平均根长外)、根系CEC显著大幅增加;P4处理后幼苗鲜重、根干重、根冠比、苗木质量指数和根系活力最高。P3处理下根中可溶性糖、NSC含量较对照显著增加26.04%和29.07%,根可溶性蛋白含量在P4处理下达到峰值(13.27 mg·g-1)。适当断根与IBA添加可通过改变根系形态和提高根系活力一定程度上促进沙冬青根系吸收和养分存储,进而提高根系质量和幼苗生长潜力。

本文引用格式

王晶晶,闫海冰,王紫瑄,解甜甜,杨秀清 . 断根与IBA处理对沙冬青根系质量及幼苗生长的影响[J]. 干旱区研究, 2022 , 39(1) : 230 -239 . DOI: 10.13866/j.azr.2022.01.22

Abstract

To solve the technical problems associated with forestry of Ammopiptanthus mongolicus, i.e., the long main root, few capillaries, difficult rooting, and low transplantation survival rate, we conducted root cuttings at different intensities and added different concentrations of IBA to A. mongolicus seedlings with different degrees of growth development. The effects of different treatment combinations on root morphology, root quality, and seedling growth were then measured and analyzed after root culture. This investigation was aimed at identifying the key measures for promoting the root survival of A. mongolicus seedlings and thereby providing a knowledge base for cultivating A. mongolicus seedlings and developing afforestation techniques. The results were as follows. (1) Root cutting promoted the occurrence of multimain roots in A. mongolicus, as well as an increase in the lateral roots, total roots, aboveground and underground biomass, root-shoot ratio, root activity, and root cation exchange capacity (CEC). Among the treatments, the 0.5-cm root tip treatment (F2) significantly promoted an increase in lateral root number, root tip number, branch number, seedling quality index, and root activity when the root length reached 1.5-2.0 cm. Root activity reached a peak value with the root cutting treatment (137.70% higher than the value in the control). Root CEC was maximal when root length reached 4.5-6.0 cm. (2) The effect of hormones on promoting root and seedling growth was further improved after root cutting. The root morphological index (except the average root length) and root CEC were significantly increased after 1.5-2.0 cm long roots were treated with 0.5 cm cutting + 0.075 mg·L -1 IBA/0.125 mg·L-1 IBA (P3 and P4 treatments, respectively). Seedling fresh weight, root dry-weight, root-shoot ratio, seedling quality index, and root activity were highest under the P4 treatment. Compared with the control, the content of soluble sugar and NSC in roots under P3 treatment was significantly increased by 26.04% and 29.07%, respectively. Additionally, the content of soluble protein in roots reached its peak under the P4 treatment (13.27 mg·g-1). Proper root cutting and the addition of IBA can promote root absorption and nutrient storage of A. mongolicus by altering root morphology and improving root activity, which in turn improves root quality and the growth potential of seedlings.

参考文献

[1] 郑旭, 李斌, 张万银, 等. 垄上栽培对盐碱地食叶草根系生长和产量的影响[J]. 干旱区研究, 2020, 37(2): 470-478.
[1] [Zheng Xu, Li Bin, Zhang Wanyin, et al. Effects of cultivation patterns on the root growth and foliage yield of Rumex hanus by.[J]. Arid Zone Research, 2020, 37(2): 470-478. ]
[2] 马雄忠, 王新平. 阿拉善高原2种荒漠植物根系构型及生态适应性特征[J]. 生态学报, 2020, 40(17): 6001-6008.
[2] [Ma Xiongzhong, Wang Xinping. Root architecture and adaptive strategy of two desert plants in the Alxa Plateau[J]. Acta Ecologica Sinica, 2020, 40(17): 6001-6008. ]
[3] 曹秀, 夏仁学, 张德健, 等. 水培条件下营养元素对枳幼苗根毛发育及根生长的影响[J]. 应用生态学报, 2013, 24(6): 1525-1530.
[3] [Cao Xiu, Xia Renxue, Zhang Dejian, et al. Effects of nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1525-1530. ]
[4] 张立恒, 李清雪, 王学全, 等. 高寒沙区中间锦鸡儿人工林细根动态及其周转[J]. 干旱区研究, 2020, 37(1): 212-219.
[4] [Zhang Liheng, Li Qingxue, Wang Xuequan, et al. Biomass dynamics and turnover of fine roots of Caragana intermedia plantations in alpine sandy land[J]. Arid Zone Research, 2020, 37(1): 212-219. ]
[5] 苏樑, 宋同清, 杜虎, 等. 喀斯特峰丛洼地不同植被恢复阶段细根生物量、形态特征及其影响因素[J]. 应用生态学报, 2018, 29(3): 783-789.
[5] [Su Liang, Song Tongqing, Du Hu, et al. Biomass and morphological characteristics of fine roots and their affecting factors in different vegetation restoration stages in depressions between karst hills[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 783-789. ]
[6] 徐立清, 崔东海, 王庆成, 等. 张广才岭西坡次生林不同生境胡桃楸幼树根系构型及细根特征[J]. 应用生态学报, 2020, 31(2): 373-380.
[6] [Xu Liqing, Cui Donghai, Wang Qingcheng, et al. Root architecture and fine root characteristics of Juglans mandshurica saplings in different habitats in the secondary forest on the west slope of Zhangguangcailing, China[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 373-380. ]
[7] 杨洪斌, 廖兴建. 植物顶端优势机理的研究进展[J]. 生物学教学, 2020, 45(10): 75-77.
[7] [Yang Hongbin, Liao Xingjian. Research progress on the mechanism of plant apical dominance[J]. Biology Teaching, 2020, 45(10): 75-77. ]
[8] Péret B, Rybel B D, Casimiro I, et al. Arabidopsis lateral root development: An emerging story[J]. Trends in Plant Science, 2009, 14(7): 399-408.
[9] Ljung K, Hull A K, Celenza J, et al. Sites and regulation of auxin biosynjournal in arabidopsis roots[J]. The Plant Cell, 2005, 17(4): 1090-1104.
[10] 李元元, 高志强. 超旱生常绿灌木沙冬青的组织培养技术研究[J]. 中国农学通报, 2018, 34(1): 51-55.
[10] [Li Yuanyuan, Gao Zhiqiang. Xerophyte Ammopiptanthus monglicus: Callus induction method research[J]. Chinese Agricultural Science Bulletin, 2018, 34(1): 51-55. ]
[11] 李晓燕, 廖里平, 高永, 等. 沙冬青属植物研究进展[J]. 草地学报, 2017, 25(5): 921-926.
[11] [Li Xiaoyan, Liao Liping, Gao Yong, et al. Research progress on Ammopiptauthus[J]. Acta Agrestia Sinica, 2017, 25(5): 921-926. ]
[12] Jin M, Guo M, Yue G, et al. An unusual strategy of stomatal control in the desert shrub Ammopiptanthus mongolicus[J]. Plant Physiology and Biochemistry, 2018, 125: 13-26.
[13] 高见. 荒漠珍品——沙冬青[J]. 中国野生植物资源, 2001, 20(4): 34.
[13] [Gao Jian. Desert treasure: Ammopiptanthus mongolicus[J]. Chinese Wild Plant Resources, 2001, 20(4): 34. ]
[14] 刘果厚. 阿拉善荒漠特有植物沙冬青濒危原因的研究[J]. 植物研究, 1998, 18(3): 3-5.
[14] [Liu Guohou. Study on the endangered reasons of Ammopiptanthus mongolicus in the desert of Alashan[J]. Bulletin of Botanical Research, 1998, 18(3): 3-5. ]
[15] 姚甲宝, 楚秀丽, 周志春, 等. 不同养分环境下邻株竞争对木荷和杉木生长、细根形态及分布的影响[J]. 应用生态学报, 2017, 28(5): 1441-1447.
[15] [Yao Jiabao, Chu Xiuli, Zhou Zhichun, et al. Effects of neighbor competition on growth,fine root morphology and distribution of Schima superba and Cunninghamia lanceola in different nutrient environments[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1441-1447. ]
[16] 夏恩龙, 施海, 彭祚登. 沙冬青抗逆性与培育技术研究进展[J]. 中国水土保持科学, 2006, 4(4): 109-113.
[16] [Xia Enlong, Shi Hai, Peng Zuodeng. Advances in stress-resistance and culture technology of Ammopiptanthus Cheng f.[J]. Science of Soil and Water Conservation, 2006, 4(4): 109-113. ]
[17] 夏恩龙. 沙冬青地理分布与在北京地区引种栽培技术的研究[D]. 北京: 北京林业大学, 2006.
[17] [Xia Enlong. Studies on Geography Distributing of Ammopiptanthus Cheng f. and Planting Technology in the Area of Beijing[D]. Beijing: Beijing Forestry University, 2006. ]
[18] 曹旭东, 罗发潘, 钱国钦. 马尾松芽苗截根移栽菌根化容器育苗研究[J]. 福建林学院学报, 1994, 14(2): 128-132.
[18] [Cao Xudong, Luo Fapan, Qian Guoqin. A study on the cultivation of the masson pine seedings in containers by inoculating bacteriorhizae fungus through roots for rootprunned bud-seeding transplantation[J]. Journal of Forest and Environment, 1994, 14(2): 128-132. ]
[19] 王雪莹, 郭素娟. 切根与不同形态氮素对板栗苗木根系构型及生长的影响[J]. 东北林业大学学报, 2020, 48(4): 15-19.
[19] [Wang Xueying, Guo Sujuan. Effects of root cutting and different nitrogen forms on root architecture and growth of Castanea mollissima seedlings[J]. Journal of Northeast Forestry University, 2020, 48(4): 15-19. ]
[20] 杨宏艳, 金英, 庭禹洁, 等. 大叶石蝴蝶组培苗根系形态对不同生长素的响应[J]. 西部林业科学, 2019, 48(6): 105-110, 119.
[20] [Yang Hongyan, Jin Ying, Ting Yujie, et al. Response of root morphology to different auxin in tissue culture seedling of Petrocosmea grandifolia[J]. Journal of West China Forestry Science, 2019, 48(6): 105-110, 119. ]
[21] 倪钟涛, 侯志颖, 李财运, 等. 断胚根处理对薄壳山核桃籽播苗生长的影响[J]. 果树学报, 2020, 37(6): 857-865.
[21] [Ni Zhongtao, Hou Zhiying, Li Caiyun, et al. Effect of radicle excision treatment on the growth of pecan seedlings[J]. Journal of Fruit Science, 2020, 37(6): 857-865. ]
[22] Caliskan S. Germination and seedling growth of holm oak (Quercus ilex L.): Effects of provenance,temperature, and radicle pruning[J]. Forest-Biogeosciences and Forestry, 2014, 7(2): 103-109.
[23] Devine W D, Harrington C A, Southworth D. Improving root growth and morphology of containerized oregon white oak seedlings[J]. Tree Planters’ Notes, 2009, 53(2): 29-34.
[24] 井大炜, 邢尚军, 刘方春, 等. 保水剂-尿素凝胶对侧柏裸根苗细根生长和氮素利用率的影响[J]. 应用生态学报, 2016, 27(4): 1046-1052.
[24] [Jing Dawei, Xing Shangjun, Liu Fangchun, et al. Effects of gel made by super absorbent polymers and urea on fine root growth and nitrogen use efficiency of Platycladus orientalis bareroot seedlings[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1046-1052. ]
[25] 宋科, 周强, 杨静慧, 等. 天津地区不同彩叶植物生长指标的比较研究[J]. 天津农林科技, 2019, 1(1): 1-4.
[25] [Song Ke, Zhou Qiang, Yang Jinghui, et al. Comparative study on growth indexes of different color leaf plants in Tianjin[J]. Science and Technology of Tianjin Agriculture and Forestry, 2019, 1(1): 1-4. ]
[26] 朱振国, 谭效磊, 张渐隆, 等. IBA对烟草幼苗根系的影响[J]. 浙江农业科学, 2019, 60(4): 554-556.
[26] [Zhu Zhenguo, Tan Xiaolei, Zhang Jianlong, et al. Effects of IBA on root system of Nicotiana tabacum seedlings[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(4): 554-556. ]
[27] 狄楠. 灌水深度对冬小麦根系形态分布及根系活力的影响[D]. 山西: 太原理工大学, 2016.
[27] [Di Nan. Effects of Irrigation Depth Controlon Root Morphology and Root Vigor of Triticum aestivum[D]. Shanxi: Taiyuan University of Technology, 2016.]
[28] 周广生, 梅方竹, 陈艳华. 冬小麦根系活力与产量性状关系的研究[J]. 华中农业大学学报, 2001, 20(6): 531-534.
[28] [Zhou Guangsheng, Mei Fangzhu, Chen Yanhua. Study on the relationship between root activity and yield traits of Triticum aestivum[J]. Journal of Huazhong Agricultural University, 2001, 20(6): 531-534. ]
[29] 赵春桥, 李继伟, 范希峰, 等. 不同盐胁迫对柳枝稷生物量、品质和光合生理的影响[J]. 生态学报, 2015, 35(19): 6489-6495.
[29] [Zhao Chunqiao, Li Jiwei, Fan Xifeng, et al. Effects of salt stress on biomass, quality, and photosynthetic physiology in switchgrass[J]. Acta Ecologica Sinica, 2015, 35(19): 6489-6495. ]
[30] 冯志培, 杨果果, 郭二辉, 等. 空气断根对侧柏实生苗生物量分配和根系生长的影响[J]. 生态学报, 2017, 37(23): 7854-7861.
[30] [Feng Zhipei, Yang Guoguo, Guo Erhui, et al. Effect of air root pruning on biomass allocation and root growth in Platycladus orientalis seedlings[J]. Acta Ecologica Sinica, 2017, 37(23): 7854-7861. ]
[31] Pike C C, Warren J C, Montgomery R A. Allometry of early growth in selected and wild sources of white spruce, Picea glauca (Moench) Voss[J]. New Forests, 2016, 47(1): 131-141.
[32] 李宪利, 高东升, 耿莉. 花期根剪对苹果幼树叶营养及光合特性的影响[J]. 山东农业大学学报, 1996, 27(3): 293-297.
[32] [Li Xianli, Gao Dongsheng, Geng Li. Effects of root-prunung on apple leaf nutrition contents and photosynthetic characters[J]. Journal of Shandong Agricultural University, 1996, 27(3): 293-297. ]
[33] 冯锴, 赵长星, 王月福, 等. 断根深度对花生光合特性及干物质积累的影响[J]. 华北农学报, 2014, 29(2): 188-192.
[33] [Feng Kai, Zhao Changxing, Wang Yuefu, et al. Efects of depth of root cutting on the photosynthetic characteristics and dry matter accumulation of Peanut[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(2): 188-192. ]
文章导航

/