天气与气候

基于蒸发皿实验的大气水汽氢氧稳定同位素模拟

  • 雷世军 ,
  • 王圣杰 ,
  • 朱小凡 ,
  • 张明军
展开
  • 1.西北师范大学地理与环境科学学院,甘肃 兰州 730070
    2.甘肃省绿洲资源环境与可持续发展重点实验室,甘肃 兰州 730070
    3.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
雷世军(1993-),男,硕士研究生,主要研究方向为寒旱区生态水文过程. E-mail: geolei@163.com

收稿日期: 2021-04-19

  修回日期: 2021-07-26

  网络出版日期: 2022-01-24

基金资助

国家自然科学基金项目(41971034);国家自然科学基金项目(41701028);甘肃省杰出青年基金项目(20JR10RA112);西北师范大学重大科研项目培育计划项目(NWNU-LKZD2021-04)

Simulation of stable hydrogen and oxygen isotopes in atmospheric water vapor based on an evaporation pan experiment

  • Shijun LEI ,
  • Shengjie WANG ,
  • Xiaofan ZHU ,
  • Mingjun ZHANG
Expand
  • 1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
    2. Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, Gansu, China
    3. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China

Received date: 2021-04-19

  Revised date: 2021-07-26

  Online published: 2022-01-24

摘要

大气水汽氢氧稳定同位素直接反映了水在大气中输送、混合和相变等过程的关键信息,通过蒸发皿实验可以模拟大气水汽氢氧稳定同位素组成,但模拟方法的可靠性仍需要实测资料的验证。于2019年9—11月在甘肃兰州进行了蒸发皿实验,对逐日大气水汽氢氧稳定同位素进行模拟,同期利用在线大气水汽氢氧稳定同位素分析仪进行实时监测从而对模拟结果的可靠性进行验证。研究发现:(1) 利用自然蒸发状态下的Craig-Gordon线性阻力模型和水体同位素质量平衡方法模拟得到的大气水汽中δ18O与直接测量得到的大气水汽中δ18O之间表现出较好的一致性,均方根误差为4.5‰,平均绝对误差为3.2‰,平均偏差为0.03‰。(2) 大气水汽中δ18O的模拟残差与相对湿度(R2=0.43)、蒸发剩余比(R2=0.39)和剩余水体同位素值(R2=0.39)都具有一定相关性。(3) 模型对相对湿度的敏感性高,在相对湿度较低时模型误差会增大。在实验末期蒸发剩余比偏低和剩余水体同位素富集的情况下,水汽同位素模拟残差相较于实验前期而言更大。

本文引用格式

雷世军 , 王圣杰 , 朱小凡 , 张明军 . 基于蒸发皿实验的大气水汽氢氧稳定同位素模拟[J]. 干旱区研究, 2022 , 39(1) : 21 -29 . DOI: 10.13866/j.azr.2022.01.03

Abstract

The stable hydrogen and oxygen isotopes in atmospheric water vapor reflect the key processes of water transport, mixing, and phase change in the atmosphere. The stable isotopic compositions of hydrogen and oxygen in atmospheric water vapor can be simulated using an evaporation pan experiment, but a measurement-based assessment of model reliability is necessary. In this study, an evaporation pan experiment was conducted in Lanzhou, Gansu, from September to November 2019. The daily atmospheric water vapor isotopes were simulated using the Craig-Gordon linear resistance model and the water isotopic mass balance method in a natural evaporative state. Online observations of atmospheric water vapor isotopes were performed using a water vapor isotope analyzer and then the pan-based simulations were verified. The simulated δ 18O in atmospheric water vapor and the directly measured δ 18O were in good agreement with a root mean square error of 4.5‰, a mean absolute error of 3.2‰, and a mean bias error of 0.03‰.The residual of simulated δ18O values were correlated with relative humidity (R2=0.43), remaining ratio (R2=0.39), and the isotopic values of the remaining water bodies (R2=0.39). The model was highly sensitive to relative humidity: lower relative humidity conditionstypically corresponded to a higher error. Under the conditions of low remaining ratio and isotopically enriched remaining water at the end of the evaporation experiment, the simulation residual was much larger than that at the beginning of the experiment.

参考文献

[1] Bowen G J, Cai Z, Fiorella R P, et al. Isotopes in the water cycle: Regional-to global-scale patterns and applications[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 453-479.
[2] Jasechko S. Global isotope hydrogeology: Review[J]. Reviews of Geophysics, 2019, 57(3): 835-965.
[3] Beyer M, Kühnhammer K, Dubbert M. In situ measurements of soil and plant water isotopes: A review of approaches, practical considerations and a vision for the future[J]. Hydrology and Earth System Sciences, 2020, 24(9): 4413-4440.
[4] 柳景峰, 丁明虎, 效存德. 大气水汽氢氧同位素观测研究进展——理论基础, 观测方法和模拟[J]. 地理科学进展, 2015, 34(3): 340-353.
[4] [Liu Jingfeng, Ding Minghu, Xiao Cunde. Review on atmospheric water vapor isotopic observation and research: Theory, method and modeling[J]. Progress in Geography, 2015, 34(3): 340-353. ]
[5] Galewsky J, Steen-Larsen H C, Field R D, et al. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle[J]. Reviews of Geophysics, 2016, 54(4): 809-865.
[6] 高晶, 姚檀栋, 蔡榕, 等. 青藏高原大气水汽稳定同位素三维观测体系[J]. 科学通报, 2019, 64(27): 2822-2829.
[6] [Gao Jing, Yao Tandong, Cai Rong, et al. Observation of the atmospheric water vapor stable isotopes in three dimensions over the Tibetan Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2822-2829. ]
[7] Gimeno L, Vázquez M, Eiras-Barca J, et al. Recent progress on the sources of continental precipitation as revealed by moisture transport analysis[J]. Earth-Science Reviews, 2020, 201: 103070.
[8] Tian L, Yu W, Schuster P F, et al. Control of seasonal water vapor isotope variations at Lhasa, southern Tibetan Plateau[J]. Journal of Hydrology, 2020, 580: 124237.
[9] Sarkozy L C, Clouser B W, Lamb K D, et al. The Chicago water isotope spectrometer (ChiWIS-lab): A tunable diode laser spectrometer for chamber-based measurements of water vapor isotopic evolution during cirrus formation[J]. Review of Scientific Instruments, 2020, 91(4): 045120.
[10] Yao T, Zhang X, Guan H, et al. Climatic and environmental controls on stable isotopes in atmospheric water vapor near the surface observed in Changsha, China[J]. Atmospheric Environment, 2018, 189: 252-263.
[11] Galewsky J. Using stable isotopes in water vapor to diagnose relationships between lower-tropospheric stability, mixing, and low-cloud cover near the island of Hawaii[J]. Geophysical Research Letters, 2018, 45(1): 297-305.
[12] Thurnherr I, Kozachek A, Graf P, et al. Meridional and vertical variations of the water vapor isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean[J]. Atmospheric Chemistry and Physics, 2020, 20(9): 5811-5835.
[13] Graf P, Wernli H, Pfahl S, et al. A new interpretative framework for below-cloud effects on stable water isotopes in vapor and rain[J]. Atmospheric Chemistry and Physics, 2019, 19(2): 747-765.
[14] Wang S, Jiao R, Zhang M, et al. Changes in below-cloud evaporation affect precipitation isotopes during five decades of warming across China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(7): e2020JD033075.
[15] Wang S, Zhang M, Che Y, et al. Influence of below-cloud evaporation on deuterium excess in precipitation of arid central Asia and its meteorological controls[J]. Journal of Hydrometeorology, 2016, 17(7): 1973-1984.
[16] 王圣杰, 张明军. 新疆天山降水稳定同位素的时空特征与影响因素[J]. 第四纪研究, 2017, 37(5): 1119-1130.
[16] [Wang Shengjie, Zhang Mingjun. Spatio-temporal characteristics and influencing factors of stable isotopes in precipitation across the Chinese Tianshan Mountains[J]. Quaternary Sciences, 2017, 37(5): 1119-1130. ]
[17] Jacob H, Sonntag C. An 8-year record of the seasonal variation of 2H and18O in atmospheric water vapor and precipitation at Heidelberg, Germany[J]. Tellus B, 1991, 43(3): 291-300.
[18] Helliker B R, Roden J S, Cook C, et al. A rapid and precise method for sampling and determining the oxygen isotope ratio of atmospheric water vapor[J]. Rapid Communications in Mass Spectrometry, 2002, 16(10): 929-932.
[19] Gat J R, Klein B, Kushnir Y, et al. Isotope composition of air moisture over the Mediterranean Sea: An index of the air-sea interaction pattern[J]. Tellus, 2003, 55: 953-965.
[20] Wen X F, Sun X M, Zhang S C, et al. Continuous measurement of water vapor D/H and18O/16O isotope ratios in the atmosphere[J]. Journal of Hydrology, 2008, 349(3-4): 489-500.
[21] Lee X, Sargent S, Smith R, et al. In situ measurement of the water vapor18O/16O isotope ratio for atmospheric and ecological applications[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(5): 555-565.
[22] Li Y, An W, Pang H, et al. Variations of stable isotopic composition in atmospheric water vapor and their controlling factors: A 6-year continuous sampling study in Nanjing, Eastern China[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(22): e2019JD031697.
[23] Craig H, Gordon L I. Deuterium and oxygen 18 variations in the ocean and marine atmosphere [C]//Tongiorgi E. Stable Isotopes in Oceanographic Studies and Paleotemperatures. Pisa: Consiglio Nazionale delle Ricerche, Laboratorio de Geologia Nucleare, 1965: 9-130.
[24] Zuber A. On the environmental isotope method for determining the water balance components of some lakes[J]. Journal of Hydrology, 1983, 61(4): 409-427.
[25] Gibson J J, Edwards T W D, Prowse T D. Pan-derived isotopic composition of atmospheric water vapor and its variability in northern Canada[J]. Journal of Hydrology, 1999, 217(1-2): 55-74.
[26] Vallet-Coulomb C, Cartapanis O, Radakovitch O, et al. Pan-derived isotopic composition of atmospheric vapour in a Mediterranean wetland (Rhône River Delta, France)[J]. Isotopes in Environmental and Health Studies, 2010, 46(1): 37-48.
[27] Devi P, Jain A K, Rao M S, et al. Isotopic composition of atmospheric moisture from pan water evaporation measurements[J]. Isotopes in Environmental and Health Studies, 2015, 51(3): 426-438.
[28] 顾小琴, 庞洪喜, 李亚举, 等. 光腔衰荡光谱技术测定大气水汽稳定同位素校正方法研究[J]. 光谱学与光谱分析, 2019, 39(6): 1700-1705.
[28] [Gu Xiaoqin, Pang Hongxi, Li Yaju, et al. Study on calibration method for atmospheric water vapor stable isotopes observed by cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 2019, 39(6): 1700-1705. ]
[29] Rambo J, Lai C T, Farlin J, et al. On-site calibration for high precision measurements of water vapor isotope ratios using off-axis cavity-enhanced absorption spectroscopy[J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(11): 1448-1457.
[30] Lee X, Sargent S, Smith R, et al. In situ measurement of the water vapor18O/16O isotope ratio for atmospheric and ecological applications[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(5): 555-565.
[31] Horita J, Wesolowski D J. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature[J]. Geochimica et Cosmochimica Acta, 1994, 58(16): 3425-3437.
[32] Fritz P, Fontes J C. Handbook of Environmental Isotope Geochemistry[M]. New York: Elsevier, 1986. 113-168.
[33] Welhan J A, Fritz P. Evaporation pan isotopic behavior as an index of isotopic evaporation conditions[J]. Geochimica et Cosmochimica Acta, 1977, 41(5): 682-686.
[34] 章新平, 姚檀栋, 田立德. 水体蒸发过程中稳定同位素分馏的模拟[J]. 冰川冻土, 2012, 25(1): 65-71.
[34] [Zhang Xinping, Yao Tandong, Tian Lide. Study on the fractionation mechanism of stable isotope in evaporating water body[J]. Journal of Glaciology and Geocryology, 2012, 25(1): 65-71. ]
[35] 包为民, 胡海英, 王涛, 等. 蒸发皿中水面蒸发氢氧同位素分馏的实验研究[J]. 水科学进展, 2008, 19(6): 780-785.
[35] [Bao Weimin, Hu Haiying, Wang Tao, et al. Experimental study on the fractionation mechanism of hydrogen and oxygen stable isotopes in evaporation from water surface of evaporation pans[J]. Advance in Water Science, 2008, 19(6): 780-785. ]
[36] Gat J R. Isotopes in the Water Cycle[M]. Dordrecht: Springer, 2005: 127-137.
[37] Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 225-262.
[38] Gat J R. Comments on the stable isotope method in regional groundwater investigations[J]. Water Resources Research, 1971, 7(4): 980-993.
文章导航

/