植物与植物生理

沙地樟子松菌根化幼苗对干旱胁迫的生理响应

展开
  • 1.北京林业大学水土保持学院 林业生态工程教育部工程研究中心,北京 100083
    2.宁夏盐池毛乌素沙地生态系统国家定位观测研究站,宁夏 盐池 751500
    3.中国水利水电科学研究院,北京 100038
    4.巴彦淖尔市沙漠综合治理中心,内蒙古 巴彦淖尔 015000
李嘉珞(1997-),男,硕士研究生,主要研究方向为荒漠化防治. E-mail: lijialuo@bjfu.edu.cn

收稿日期: 2021-04-25

  修回日期: 2021-08-16

  网络出版日期: 2021-11-29

基金资助

国家重点研发计划项目“基于低覆盖度理论的防沙治沙新材料、新装备、新技术研发”(2018YFC0507101);内蒙古自治区中央引导地方科技项目“浑善达克沙地生态文化产业关键技术研究与示范”;中央高校基本科研业务费项目“毛乌素沙地樟子松根内真菌群落对林龄和物候的动态响应”(2021ZY47)

Physiological responses of mycorrhizal seedlings of Pinus sylvestris var. mongolica to drought stress

Expand
  • 1. Engineering Research Center of Forestry Ecological Engineering, Ministry of Education; School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    2. Yanchi Ecology Research Station of the Mu Us Desert, Yanchi 751500, Ningxia, China
    3. China Institute of Water Resource and Hydropower Research, Beijing 100038, China
    4. Desertification Combating Centre of Bayannur City, Inner Mongolia Autonomous Region, Bayannur 015000, Inner Mongolia, China

Received date: 2021-04-25

  Revised date: 2021-08-16

  Online published: 2021-11-29

摘要

外生菌根可以有效促进林木水分吸收,提高林木抗旱能力,维持森林生态系统稳定性。沙地樟子松是一种典型的外生菌根依赖型树种,为比较分析沙地樟子松菌根化幼苗抗旱能力,以点柄乳牛肝菌(Suillus granulatus)(Sg)、口蘑属真菌(Tricholoma sp.)(Ts)和褐环乳牛肝菌(Suillus luteus)(Sl)3种重要外生菌根真菌侵染后的菌根化幼苗为研究对象,通过室内控制试验设置土壤饱和含水率80%(水分充足)、40%(湿润)、20%(水分适宜)、10%(轻度干旱)和5%(重度干旱)5个水分处理梯度,测定干旱胁迫下沙地樟子松幼苗的生理特征参数。结果表明:(1) Sl处理组主要通过提高抗氧化酶活性减轻自由氧对细胞的伤害,进而抵御干旱胁迫。在轻度干旱时,超氧化物歧化酶和过氧化物酶活性达到最大值425.16 U·g-1和202.73 U·g-1。(2) Sg处理组既可以提高抗氧化酶活性抵御干旱胁迫,又通过积累脯氨酸调节细胞渗透压减缓干旱胁迫的影响。在轻度干旱时,超氧化物歧化酶活性和可溶性糖含量达到最大值397.01 U·g-1和199.50 μg·mL -1。(3) Ts处理组主要通过提高最大光化学效率抵御干旱胁迫。在水分正常和轻度干旱胁迫时,叶片最大光化学效率显著高于对照组(P<0.05)。发生干旱胁迫时,菌根化幼苗能够通过提高抗氧化酶活性、调节渗透物质含量和提高叶片光化学效率等方式保障沙地樟子松正常生理活动,抵御干旱胁迫,但不同外生菌根真菌提高沙地樟子松耐旱性的途径存在差异。研究结果可为深入理解外生菌根生态功能和沙地樟子松菌根化造林技术研发提供理论依据。

本文引用格式

李嘉珞,郭米山,高广磊,阿拉萨,杜凤梅,殷小琳,丁国栋 . 沙地樟子松菌根化幼苗对干旱胁迫的生理响应[J]. 干旱区研究, 2021 , 38(6) : 1704 -1712 . DOI: 10.13866/j.azr.2021.06.22

Abstract

Ectomycorrhiza plays an effective role in the water absorption and drought resistance of host plants and contributes to the stability maintenance of the forest ecosystem. Pinus sylvestris var. mongolica is one of the typical tree species for windbreak shelterbelts in northern China, which depends on ectomycorrhiza during its life process. In this study, seedlings infected by three important ectomycorrhizal fungi, namely, Suillus granulatus (Sg), Tricholoma sp. (Ts), and Suillus luteus (Sl), were tested to compare the drought resistance of mycorrhizal seedlings. A controlled experiment was conducted under the following drought stress gradients: 80% (sufficient water supply), 40% (moist water supply), 20% (suitable water supply), 10% (mild drought), and 5% (severe drought) of saturated soil moisture content. The physiological parameters of P. sylvestris var. mongolica seedlings were measured accordingly. Results indicated that (1) the Sl treatment efficiently alleviated the damage of reactive oxygen by increasing antioxidant enzyme activities to resist drought stress. Under mild drought, superoxide dismutase (SOD) and peroxidase activities reached the maximum values of 425.16 U·g-1 and 202.73 U·g-1, respectively. (2) Sg treatment not only increased the antioxidant enzyme activities to resist drought stress but also relieved this impact by accumulating proline to regulate penetration. Under mild drought, the maximum SOD and soluble sugar levels were 397.01 U·g-1 and 199.50 μg·mL-1, respectively. (3) The Ts treatment largely increased the maximum photosynthetic efficiency. Under normal moisture content and mild drought stress, the maximum photosynthetic efficiency was significantly higher than that of the referenced group (P<0.05). To resist drought stress, ectomycorrhiza maintained the regular physiological activities of P. sylvestris var. mongolica seedlings by improving antioxidant enzyme activities, regulating osmotic substance contents, and increasing the photochemical efficiency. However, the approaches of ectomycorrhiza were different in the drought resistance improvement of P. sylvestris var. mongolica seedlings. This study provided the physiological evidence of ecological functions of ectotrophic mycorrhiza and contributed to investigations on afforestation technology by using mycorrhizal seedlings.

参考文献

[1] 陈璐璐, 冯秋红, 孙建新. 川西亚高山岷江冷杉外生菌根形态随海拔梯度的分化[J]. 应用生态学报, 2020, 31(9):2911-2922.
[1] [ Chen Lulu, Feng Qiuhong, Sun Jianxin. Differentiation of ectomycorrhizal morphology in Abies faxoniana along an elevation gradient in a subalpine forest of western Sichuan Province, China[J]. Chinese Journal of Applied Ecology, 2020, 31(9):2911-2922. ]
[2] 赵珮杉, 郭米山, 高广磊, 等. 科尔沁沙地樟子松根内真菌群落结构和功能群特征[J]. 林业科学, 2020, 56(9):87-96.
[2] [ Zhao Peishan, Guo Mishan, Gao Guanglei, et al. Characteristics of community structure and functional group of fungi in roots of Pinus sylvestris var. mongolica in the Horqin Sandy Land[J]. Scientia Silvae Sinicae, 2020, 56(9):87-96. ]
[3] 王琚钢, 峥嵘, 白淑兰, 等. 外生菌根对干旱胁迫的响应[J]. 生态学杂志, 2012, 31(6):1571-1576.
[3] [ Wang Jugang, Zheng Rong, Bai Shulan, et al. Responses of ectomycorrhiza to drought stress[J]. Chinese Journal of Ecology, 2012, 31(6):1571-1576. ]
[4] 郭米山, 高广磊, 丁国栋, 等. 呼伦贝尔沙地樟子松外生菌根真菌多样性[J]. 菌物学报, 2018, 37(9):1133-1142.
[4] [ Guo Mishan, Gao Guanglei, Ding Guodong, et al. Diversity of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica in Hulunbuir Sandy Land[J]. Mycosystema, 2018, 37(9):1133-1142. ]
[5] 郭米山, 丁国栋, 高广磊, 等. 非生物逆境中外生菌根对宿主植物抗逆性的增强作用[J]. 世界林业研究, 2019, 32(5):15-21.
[5] [ Guo Mishan, Ding Guodong, Gao Guanglei, et al. Enhancement to host plant resistance in abiotic stress by ectomycorrhizae[J]. World Forestry Research, 2019, 32(5):15-21. ]
[6] Van Nuland M E, Peay K G. Symbiotic niche mapping reveals functional specialization by two ectomycorrhizal fungi that expands the host plant niche[J]. Fungal Ecology, 2020, DOI: 10.1016/j.funeco.2020.100960.
[7] 赵敏, 郝文颖, 宁心哲, 等. 红花尔基樟子松优良抗旱菌树组合的筛选[J]. 植物研究, 2020, 40(1):133-140.
[7] [ Zhao Min, Hao Wenying, Ning Xinzhe, et al. Screening of excellent ectomycorrhizal fungi-tree for drought resistant with Pinus sylvestris var. mongolica[J]. Bulletin of Botanical Research, 2020, 40(1):133-140. ]
[8] 王家源, 殷小琳, 任悦, 等. 毛乌素沙地樟子松外生菌根真菌多样性特征[J]. 微生物学通报, 2020, 47(11):3856-3867.
[8] [ Wang Jiayuan, Yin Xiaolin, Ren Yue, et al. Diversity characteristics of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica in the Mu Us sandy land[J]. Microbiology China, 2020, 47(11):3856-3867. ]
[9] 任悦, 高广磊, 丁国栋, 等. 沙地樟子松人工林叶片-枯落物-土壤有机碳含量特征[J]. 北京林业大学学报, 2018, 40(7):36-44.
[9] [ Ren Yue, Gao Guanglei, Ding Guodong, et al. Characteristics of organic carbon content of leaf-litter-soil system in Pinus sylvestris var. mongolica plantations[J]. Journal of Beijing Forestry University, 2018, 40(7):36-44. ]
[10] 王凯, 沈潮, 宋立宁, 等. 持续干旱下沙地樟子松幼苗C、N、P化学计量变化规律[J]. 生态学杂志, 2020, 39(7):2175-2184.
[10] [ Wang Kai, Shen Chao, Song Lining, et al. Variations in C, N and P stoichiometry of Pinus sylvestris var. mongolica seedlings under continuous drought[J]. Chinese Journal of Ecology, 2020, 39(7):2175-2184. ]
[11] Guo M S, Ding G D, Gao G L, et al. Ren Y. Community composition of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica plantations of various ages in the Horqin Sandy Land[J]. Ecological Indicators, 2020, 110:105860.
[12] Guo M S, Ding G D, Gao G L, et al. Drivers of ectomycorrhizal fungal community structure associated with Pinus sylvestris var. mongolica differ at regional vs. local spatial scales in the northern China[J]. Forests, 2020, 11(3):323.
[13] 陈洁, 刘雪峰, 郝昕, 等. 接种点柄乳牛肝菌对樟子松枯梢病抗病性的影响[J]. 东北林业大学学报, 2019, 47(3):94-99, 110.
[13] [ Chen Jie, Liu Xuefeng, Hao Xin, et al. Effect of disease resistance of Suillus granulatus to Pinus sylvestris var. mongolica[J]. Journal of Northeast Forestry University, 2019, 47(3):94-99, 110. ]
[14] Anna-Lena Z, Dennis K, Gila M, et al. Distribution of major and trace elements in the bolete mushroom Suillus luteus and the bioavailability of rare earth elements[J]. Chemical Geology, 2018, 483:419-500.
[15] Abdulsalam O, Wagner K, Wirth S, et al. Phytohormones and volatile organic compounds, like geosmin, in the ectomycorrhiza of Tricholoma vaccinum and Norway spruce (Picea abies)[J]. Mycorrhiza, 2020, 1-16.
[16] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2003: 156-261.
[16] [ Li Hesheng. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2003: 156-261. ]
[17] 陈婕, 谢靖, 唐明. 水分胁迫下丛枝菌根真菌对紫穗槐生长和抗旱性的影响[J]. 北京林业大学学报, 2014, 36(6):142-148.
[17] [ Chen Jie, Xie Jing, Tang Ming. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress[J]. Journal of Beijing Forestry University, 2014, 36(6):142-148. ]
[18] 祁金玉, 尹大川, 宋瑞清. 褐环乳牛肝菌(Suillus luteus)对樟子松耐盐性的影响[J]. 沈阳农业大学学报, 2019, 50(1):108-113.
[18] [ Qi Jinyu, Yin Dachuan, Song Ruiqing. Effects of Suillus luteus on salt resistance of Pinus sylvestris var. mongolica seedlings[J]. Journal of Shenyang Agricultural University, 2019, 50(1):108-113. ]
[19] 王丽君, 李冬, 申洪涛, 等. 油菜素内酯对干旱胁迫下烤烟幼苗生长生理及光合特性的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(11):33-41.
[19] [ Wang Lijun, Li Dong, Shen Hongtao, et al. Effects of brassinolide on growth, physiology and photosynthetic characteristics of flue-cured tobacco seedings under drought stress[J]. Journal of Northwest A & F University (Naturnal Sciences Edition), 2020, 48(11):33-41. ]
[20] 徐超, 吴小芹. 菌根化马尾松植株抗旱性研究[J]. 西部林业科学, 2012, 41(6):43-47.
[20] [ Xu Chao, Wu Xiaoqin. Drought resistance of Pinus massoniana seedlings inoculated with ectomycorrhizal fungi[J]. Journal of West China Forestry Science, 2012, 41(6):43-47. ]
[21] 黄海霞, 连转红, 王亮, 等. 裸果木渗透调节物质和抗氧化酶活性对干旱的响应[J]. 干旱区研究, 2020, 37(1):227-235.
[21] [ Huang Haixia, Lian Zhuanhong, Wang Liang, et al. Response of osmotic regulation substances and antioxidant enzyme activity in leaves of Gymnocarpos przewalskii to drought[J]. Arid Zone Research, 2020, 37(1):227-235. ]
[22] Yin D C, Song R Q, Qi J Y, et al. Ectomycorrhizal fungus enhances drought tolerance of Pinus sylvestris var. mongolica seedlings and improves soil condition[J]. Journal of Forestry Research, 2017, 29(6):1775-1788.
[23] 张中峰, 张金池, 黄玉清, 等. 接种菌根真菌对青冈栎幼苗耐旱性的影响[J]. 生态学报, 2016, 36(11):3402-3410.
[23] [ Zhang Zhongfeng, Zhang Jinchi, Huang Yuqing, et al. Effects of mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings[J]. Acta Ecologica Sinica, 2016, 36(11):3402-3410. ]
[24] Manoharan P T, Shanmugaiah V, Balasubramanian N, et al. Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions[J]. European Journal of Soil Biology, 2010, 46(2):151-156.
[25] 段娜, 王佳, 刘芳, 等. 植物抗旱性研究进展[J]. 分子植物育种, 2018, 16(15):5093-5099.
[25] [ Duan Na, Wang Jia, Liu Fang, et al. Research progress on drought resistance of plant[J]. Molecular Plant Breeding, 2018, 16(15):5093-5099. ]
[26] 张丹, 任洁, 王慧梅. 干旱胁迫及复水对红松针叶和树皮绿色组织光合特性及抗氧化系统的影响[J]. 生态学杂志, 2016, 35(10):2606-2614.
[26] [ Zhang Dan, Ren Jie, Wang Huimei. Response of photosynthetic characteristics and antioxidant system in needles and bark chlorenchyma of Korean pine to drought stress and rehydration[J]. Chinese Journal of Ecology, 2016, 35(10):2606-2614. ]
[27] Guo Y Y, Yu H Y, Yang M M, et al. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling[J]. Russian Journal of Plant Physiology, 2018, 65(2):244-250.
[28] 苏志豪, 周晓兵, 姜小龙, 等. 不同土壤水分条件下沙生柽柳(Tamarix taklamakanensis)的生理生化特征及适应性[J]. 干旱区研究, 2021, 38(1):198-206.
[28] [ Su Zhihao, Zhou Xiaobing, Jiang Xiaolong, et al. Physiological and biochemical characteristics and adaptability of Tamarix taklamakanensis in different ecological habitats in the Tarim Basin[J]. Arid Zone Research, 2021, 38(1):198-206. ]
[29] 李得禄, 刘世增, 康才周, 等. 水分胁迫下云杉属两种植物荧光参数特征研究[J]. 干旱区资源与环境, 2015, 29(6):117-121.
[29] [ Li Delu, Liu Shizeng, Kang Caizhou, et al. Effects of water stress on chlorophyll fluorescence characteristics of two Picea species[J]. Journal of Arid Land Resources and Environment, 2015, 29(6):117-121. ]
[30] 邹慧, 王春胜, 曾杰. 土著菌根真菌对西南桦无性系幼苗光合生理的影响[J]. 中南林业科技大学学报, 2019, 39(1):1-7.
[30] [ Zou Hui, Wang Chunsheng, Zeng Jie. Effect of native mycorrhizal fungi on photosynthetic physiology of Betula alnoides clones seedlings[J]. Journal of Central South University of Forestry & Technology, 2019, 39(1):1-7. ]
[31] Khajeddin S, Matinkhah S, Jafari Z. A drought resistance index to select drought resistant plant species based on leaf water potential measurements[J]. Journal of Arid Land, 2019, 11(4):623-635.
[32] 张文泉, 闫伟. 外生菌根菌对樟子松苗木生长的影响[J]. 西北植物学报, 2013, 33(5):998-1003.
[32] [ Zhang Wenquan, Yan Wei. Effect of ectomycorrhizae on the growth of Pinus sylvestris var. monglica seedings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(5):998-1003. ]
文章导航

/