植物与植物生理

天山北坡山前植物对干旱胁迫的生理响应

展开
  • 1.新疆大学资源与环境科学学院,新疆 乌鲁木齐 830046
    2.新疆大学绿洲生态教育部重点实验室,新疆 乌鲁木齐 830046
    3.新疆林业科学院,新疆 乌鲁木齐 830018
    4.新疆农业大学林学与园艺学院,新疆 乌鲁木齐 830052
汤东(1996-),男,硕士研究生,主要从事干旱区植被生态恢复研究. E-mail: 627346905@qq.com

收稿日期: 2021-01-29

  修回日期: 2021-04-21

  网络出版日期: 2021-11-29

基金资助

天然林保护工程财政资金专项(XJTB2020-03)

Physiological responses of plants to drought stress in the Northern Piedmont, Tianshan Mountains

Expand
  • 1. College of Resources and Environmental Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
    2. Key Laboratory of Oasis Ecology Ministry of Education, Xinjiang University, Urumqi 830046, Xinjiang, China
    3. Xinjiang Academy of Forestry Sciences, Urumqi 830018, Xinjiang, China
    4. College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China

Received date: 2021-01-29

  Revised date: 2021-04-21

  Online published: 2021-11-29

摘要

为筛选出天山北坡前山带植被恢复的适宜植物种,以水平沟和鱼鳞坑两种恢复方式,选取锦鸡儿(Caragana frutex)、沙棘(Hippophae rhamnoides)、蔷薇(Rosa)和文冠果(Xanthoceras sorbifolia)为试验材料,观测灌水后土壤水分的时间变化,分析土壤水分变化下4种植物叶片相对含水量、叶绿素、保护酶活性与渗透调节物质的变化趋势,综合评价4种植物的抗旱性。结果表明:随着土壤水分的降低,叶片相对含水量和叶绿素含量均显著降低,鱼鳞坑4种植物叶绿素含量的下降速率高于水平沟;4种植物SOD和POD酶活性含量随水分胁迫程度的加剧均呈先增加后降低最后回到初始水平的特点,但其达到峰值的时间不同;4种植物的可溶性蛋白、丙二醛和脯氨酸含量随水分胁迫加剧均有不同程度的上升趋势,且变化差异性显著。主成分分析法对4种植物的7个生理指标的抗旱能力综合评价表明,水平沟更适于该区域植被恢复,锦鸡儿和蔷薇抗旱适宜性更好。

本文引用格式

汤东,程平,杨建军,李宏,孙建文,王凯 . 天山北坡山前植物对干旱胁迫的生理响应[J]. 干旱区研究, 2021 , 38(6) : 1683 -1694 . DOI: 10.13866/j.azr.2021.06.20

Abstract

We screened suitable plant species for vegetation restoration in the front mountain zone of the Northern Piedmonts of the Tianshan Mountains. Caragana frutex, Hippophae rhamnoides, Rosa, and Xanthoceras sorbifolia. Under two restoration methods of level furrow and fish-scale pit were used as experimental materials to observe irrigation. Following changes in soil moisture, we analyzed relative water content, chlorophyll, protective enzyme activity, and osmotic adjustment of the four plants under changing soil moisture and evaluated their drought resistance. The results showed decreasing soil moisture, relative leaf water content, and chlorophyll content were significantly reduced, while chlorophyll content of the four plant species in the fish-scale pit decreased faster than level furrow treatment. SOD and POD enzyme activity content of the four plants initially increased, then decreased and returned to initial levels following intense water stress. However, the time to reach its peak differed. Soluble protein, malondialdehyde, and proline content of the four plants all varied in their upward trend with increasing water stress, which were all significant. The comprehensive evaluation of drought resistance of seven physiological indicators for four plants using principal component analysis showed that level furrow is more suitable for vegetation restoration and Caragana frutex and Rosa show better drought resistance suitability.

参考文献

[1] 程维明, 周成虎, 汤奇成, 等. 天山北坡前山带景观分布特征的遥感研究[J]. 地理学报, 2001, 68(5):540-547.
[1] [ Cheng Weiming, Zhou Chenghu, Tang Qicheng, et al. RS research of landscape distribution characteristics of Northern Piedmont, Tianshan Mountains[J]. Acta Geographica Sinica, 2001, 68(5):540-547. ]
[2] 刘超, 闫小月, 姜逢清. 天山北坡前山带降水分布型对荒漠植被的影响——基于逐日降水数据和NDVI分析[J]. 生态学报, 2020, 40(21):7790-7804.
[2] [ Liu Chao, Yan Xiaoyue, Jiang Fengqing. Influence of precipitation distribution on desert vegetation of Northern Piedmont, Tianshan Mountain:analysis based on daily NDVI and precipitation data[J]. Acta Ecologica Sinica, 2020, 40(21):7790-7804. ]
[3] 孙宗玖, 安沙舟, 马金昌. 围栏封育对草原植被及多样性的影响[J]. 干旱区研究, 2007, 24(5):669-674.
[3] [ Sun Zongjiu, An Shazhou, Ma Jinchang. Effect of fencing on vegetation and diversity of steppe in the middle section of Northern Slope of the Tianshan Mountains, China[J]. Arid Zone Research, 2007, 24(5):669-674. ]
[4] 潘旭东, 王江丽, 吴玲, 等. 亚洲中部干旱区绿洲水热匹配与生物、农业技术适应性分析[J]. 干旱区研究, 2019, 36(1):52-57.
[4] [ Pan Xudong, Wang Jiangli, Wu Ling, et al. Adaptability of biology and agricultural technologies to the water-heat coordination in the arid oases in Central Asia[J]. Arid Zone Research, 2019, 36(1):52-57. ]
[5] 齐元元, 尚华明, 张瑞波, 等. 利用树轮重建玛纳斯河流域过去289 a降水变化[J]. 干旱区研究, 2017, 34(4):942-949.
[5] [ Qi Yuanyuan, Shang Huaming, Zhang Ruibo, et al. The 289 year variation of precipitation reconstructed with tree-ring data in the Manas River basin[J]. Arid Zone Research, 2017, 34(4):942-949. ]
[6] 宋文杰, 张清, 刘莎莎, 等. 基于LUCC的干旱区人为干扰与生态安全分析——以天山北坡经济带绿洲为例[J]. 干旱区研究, 2018, 35(1):235-242.
[6] [ Song Wenjie, Zhang Qing, Liu Shasha, et al. LUCC-based human disturbance and ecological security in arid area: A case study in the economic zone on Northern Slope of the Tianshan Mountains[J]. Arid Zone Research, 2018, 35(1):235-242. ]
[7] 尼加提·伊米尔, 满苏尔·沙比提, 玉苏甫·买买提. 天山北坡植被NDVI时空变化及其与气候因子的关系[J]. 干旱区研究, 2019, 36(5):1250-1260.
[7] [ Nijiati Yimier, Mansur Shabiti, Yusufu Maimaiti. Spatiotemporal variation of vegetation NDVI and its relationship with climatic factors on the Northern Slope of the Tianshan Mountains[J]. Arid Zone Research, 2019, 36(5):1250-1260. ]
[8] 王青宁, 衣学慧, 王晗生, 等. 黄土坡面植被重建鱼鳞坑整地的土壤水分特征[J]. 土壤通报, 2015, 46(4):866-872.
[8] [ Wang Qingning, Yi Xuehui, Wang Hansheng, et al. Soil moisture regime of fish-scale pits for land preparation engineering in Loess slope revegetation[J]. Chinese Journal of Soil Science, 2015, 46(4):866-872. ]
[9] 王晗生. 提高人工植被培育中土壤抗旱性的综合措施[J]. 农业工程学报, 2008, 24(12):41-47.
[9] [ Wang Hansheng. Comprehensive measures for improving drought resistance of soil in cultivation of artificial vegetation[J]. Transactions of the CSAE, 2008, 24(12):41-47. ]
[10] 朱聿申, 陈宇轩, 查同刚, 等. 大鱼鳞坑双苗造林技术在黄土沟壑区的应用效果[J]. 干旱区研究, 2016, 33(3):560-568.
[10] [ Zhu Yushen, Chen Yuxuan, Zha Tonggang, et al. Application of double-seedling afforestation technique in big fish-scale pits in the Loess Gully area[J]. Arid Zone Research, 2016, 33(3):560-568. ]
[11] 宿婷婷, 韩丙芳, 马红彬, 等. 水平沟整地措施对黄土丘陵区草原土壤水分动态平衡的影响[J]. 农业工程学报, 2019, 35(21):125-134.
[11] [ Su Tingting, Han Bingfang, Ma Hongbin, et al. Effects of contour trenches engineering measures on soil moisture dynamics and balance of typical steppe in Loess Hilly Region[J]. Transactions of the CSAE, 2019, 35(21):125-134. ]
[12] 王艳军. 干旱半干旱地区造林整地方式研究[J]. 农村实用技术, 2020, 23(12):122-123.
[12] [ Wang Yanjun. Researh on the ways of afforestation and land preparation in arid and semi-arid areas[J]. Rural Practical Technology, 2020, 23(12):122-123. ]
[13] 潘昕, 邱权, 李吉跃, 等. 干旱胁迫对青藏高原6种植物生理指标的影响[J]. 生态学报, 2014, 34(13):3558-3567.
[13] [ Pan Xin, Qiu Quan, Li Jiyue, et al. Physiological indexes of six plant species from the Tibetan Plateau under drought stress[J]. Acta Ecologica Sinica, 2014, 34(13):3558-3567. ]
[14] Cui X, Xue J, Zhang B, et al. Physiological change and screening of differentially expressed genes of wild Chinese Vitis yeshanensis and American Vitis riparia in response to drought stress[J]. Scientia Horticulturae, 2020, 266(1):109140.
[15] Deans C A, Sword G A, Lenhart P A, et al. Quantifying plant soluble protein and digestible carbohydrate content, using corn (Zea mays) as an exemplar[J]. Journal of Visualized Experiments, 2018, 6(138):58164.
[16] 谭雪红, 高艳鹏, 郭小平, 等. 五种高速公路边坡绿化植物的生理特性及抗旱性综合评价[J]. 生态学报, 2012, 32(16):5076-5086.
[16] [ Tan Xuehong, Gao Yanpeng, Guo Xiaoping, et al. Physiological characteristics and comprehensive evaluation of drought resistance in five plants used for roadside ecological restoration[J]. Acta Ecologica Sinica, 2012, 32(16):5076-5086. ]
[17] 罗青红, 宁虎森, 何苗, 等. 5种沙地灌木对干旱胁迫的生理生态响应[J]. 林业科学, 2017, 53(11):29-42.
[17] [ Luo Qinghong, Ning Husen, He Miao, et al. Physiological characteristics and comprehensive evaluation of drought resistance in five plants used for roadside ecological restoration[J]. Acta Ecologica Sinica, 2017, 53(11):29-42. ]
[18] 由佳辉, 高林, 王海鸥, 等. 干旱胁迫对9个葡萄砧木品种生理指标的影响[J]. 经济林研究, 2020, 38(3):180-189.
[18] [ You Jiahui, Gao Lin, Wang Hai’ou, et al. Effects of drought stress on physiological indexes of nine grape rootstock varieties[J]. Economic Forest Research, 2020, 38(3):180-189. ]
[19] 牛雯, 蒋志荣, 杨育苗, 等. 四种锦鸡儿属植物光合指标变化与环境因子的关系[J]. 甘肃农业大学学报, 2018, 53(6):193-200.
[19] [ Niu Wen, Jiang Zhirong, Yang Yumiao, et al. Variations of photosynthetic indices of four Caraganabushes and their relationships with environmental factors[J]. Journal of Gansu Agricultural University, 2018, 53(6):193-200. ]
[20] 王玉丽, 孙居文, 荀守华, 等. 干旱胁迫对东岳红光合特性、叶绿素荧光参数及叶片相对含水量的影响[J]. 山东农业科学, 2017, 49(4):46-50.
[20] [ Wang Yuli, Sun Juwen, Xun Shouhua, et al. Effects of drought stress on photosynthetic characteristics, fluorescence parameters and relative water content of ‘Dong Yue Hong’ leaves[J]. Shandong Agricultural Sciences, 2017, 49(4):46-50. ]
[21] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 130-132.
[21] [ Li Hesheng. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2000: 130-132. ]
[22] Giannopolites C N, Ries S K. Superoxide dismutase occurrence in higher plants[J]. Plant Physiology, 1977, 59(2):309-314.
[23] Rao M V, Paliyath G, Ormrod D P. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana[J]. Plant Physiology, 1996, 110(1):125-136.
[24] 白宝璋, 汤学军. 植物生理学测试技术[M]. 北京: 中国科技出版社, 1993: 156-157.
[24] [ Bai Baozhang, Tang Xuejun. Testing Techniques of Plant Physiology[M]. Beijing: China Science and Technology Press, 1993: 156-157. ]
[25] 张志良. 植物生理学实验指导[M]. 第二版. 北京: 高等教育出版社, 1990.
[25] [ Zhang Zhiliang. Plant Physiology Experiment Instructtion[M]. 2nd ed. Beijing: Higher Education Press, 1990. ]
[26] 邹琦. 植物生理学指导[M]. 北京: 中国农业出版社, 2003.
[26] [ Zou Qi. Plant Physiology Guidance[M]. Beijing: China Agriculture Press, 2003. ]
[27] 何建社, 张利, 刘千里, 等. 岷江干旱河谷区典型灌木对干旱胁迫的生理生化响应[J]. 生态学报, 2018, 38(7):2362-2371.
[27] [ He Jianshe, Zhang Li, Liu Qianli, et al. Physiological and biochemical responses of typical shrubs to drought stress in arid valley of Minjiang River[J]. Acta Ecologica Sinica, 2018, 38(7):2362-2371. ]
[28] 陈晓光, 于寒青, 刘文祥, 等. 基于MDC方法评价林下劣地碳氮提升对短期恢复措施的响应[J]. 水土保持学报, 2020, 34(4):280-287.
[28] [ Chen Xiaoguang, Yu Hanqing, Liu Wenxiang, et al. Assessment of the response of soil organic carbon and nitrogen enhancement in erosion-degraded land to short-term restoration measures based on minimum detectable change method[J]. Journal of Soil and Water Conservation, 2020, 34(4):280-287. ]
[29] 宿婷婷, 马红彬, 周瑶, 等. 黄土丘陵典型草原土壤理化性质对生态恢复措施的响应[J]. 草业学报, 2019, 28(4):34-46.
[29] [ Su Tingting, Ma Hongbin, Zhou Yao, et al. Response of typical steppe grassland soil physical and chemical properties to various ecological restoration measures in the Ningxia Loess Hill Region[J]. Acta Prataculturae Sinica, 2019, 28(4):34-46. ]
[30] 赵一鹤, 杨时宇, 周祥, 等. 巨尾桉工业原料林地与不同土地利用类型坡面产流产沙特征对比分析[J]. 水土保持通报, 2012, 32(1):77-81, 88.
[30] [ Zhao Yihe, Yang Shiyu, Zhou Xiang, et al. Comparative analysis of slope runoff and sediment yield from Eucalytus grandis×E. urophylla industrial plantations and other land use types[J]. Bulletin of Soil and Water Conservation, 2012, 32(1):77-81, 88. ]
[31] 林伟通, 庄雪影, 詹红星, 等. 干旱与复水对中华润楠幼苗生长及生理特性的影响[J]. 西南林业大学学报(自然科学), 2017, 37(5):35-41.
[31] [ Lin Weitong, Zhuang Xueying, Zhan Hongxing, et al. Growth and physiological characteristics of Machilus chinensis seedling under drought and rewatering[J]. Journal of Southwest Forestry University (Natural Science), 2017, 37(5):35-41. ]
[32] 靳月, 李铁华, 文仕知, 等. 干旱胁迫对闽楠幼苗的生长和生理特性的影响[J]. 中南林业科技大学学报, 2018, 38(9):50-57.
[32] [ Jin Yue, Li Tiehua, Wen Shizhi, et al. Growth and physiological characteristics of Phoebe bournei seedlings under drought stress[J]. Journal of Central South University of Forestry Technology, 2018, 38(9):50-57. ]
[33] 武燕奇, 郭素娟. 10个板栗砧木品种(系)抗旱性综合评价[J]. 东北农业大学学报, 2016, 47(10):9-16.
[33] [ Wu Yanqi, Guo Sujuan. Comprehensive evaluation on drought resistance of 10 Chinese chestnut varieties (strain)[J]. Journal of Northeast Agricultural University, 2016, 47(10):9-16. ]
[34] Zhang Shuhan, Xu Xuefeng, Sun Yemin, et al. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress[J]. Journal of Integrative Agriculture, 2018, 17(2):336-347.
[35] 黄桂华, 梁坤南, 周再知, 等. 柚木无性系苗期抗旱生理评价与选择的研究[J]. 中南林业科技大学学报, 2018, 38(5):11-17.
[35] [ Huang Guihua, Liang Kunnan, Zhou Zaizhi, et al. Drought stress physiological estimate and early selection of Tectona grandis clones at seedling stage[J]. Journal of Central South University of Forestry Technology, 2018, 38(5):11-17. ]
[36] 种培芳, 单立山, 苏世平, 等. 甘肃旱区5个经济林树种的苗期抗旱性综合评价[J]. 干旱地区农业研究, 2017, 35(1):198-204, 247.
[36] [ Zhong Peifang, Shan Lishan, Su Shiping, et al. Comprehensive evaluation of seedling drought resistance of five economic forest species in arid area of Gansu Province[J]. Agricultural Research in the Arid Areas, 2017, 35(1):198-204, 247. ]
[37] Furlan A L, Bianucci E, Giordano W, et al. Proline metabolic dynamics and implications in drought tolerance of peanut plants[J]. Plant Physiology and Biochemistry, 2020, 34(151):566-578.
[38] 周瑞莲, 解卫海, 侯玉平, 等. 东北沙地7种植物高温时段的生理适应对策[J]. 林业科学, 2014, 50(6):74-81.
[38] [ Zhou Ruilian, Xie Weihai, Hou Yuping, et al. Analysis on the differences in the strategy of physiological regulation among Psammophytes with different family and genera in natural habit of desert[J]. Scientia Silvae Sinicae, 2014, 50(6):74-81. ]
[39] 肖姣娣. 3种刺篱植物对干旱胁迫的生理生化响应[J]. 西北农林科技大学学报(自然科学版), 2015, 43(7):155-160.
[39] [ Xiao Jiaodi. Physiological and biochemical responses of three spiny plants to drought stress[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(7):155-160. ]
文章导航

/