植物与植物生理

拉萨河谷杨树人工林枯落物蓄积特征及持水性能

展开
  • 1.中国科学院山地灾害与地表过程重点实验室,四川 成都 610041
    2.中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041
    3.中国科学院大学,北京 100049
刘琳(1996-),女,博士研究生,主要从事土壤侵蚀与水土保持. E-mail: lliu@imde.ac.cn

收稿日期: 2020-11-24

  修回日期: 2021-04-14

  网络出版日期: 2021-11-29

基金资助

第二次青藏高原综合科学考察研究(2019QZKK0404);中国科学院先导专项A(XDA20020401)

Litter storage and its water-holding capacity of Populus plantations in Lhasa River Valley

Expand
  • 1. Key Laboratory of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
    2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
    3. University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-11-24

  Revised date: 2021-04-14

  Online published: 2021-11-29

摘要

研究拉萨河谷典型杨树人工林枯落物蓄积及其持水性能对深入探究青藏高原人工林水源涵养能力具有重要意义。本文以拉萨河谷区5种不同林龄(12 a、15 a、19 a、27 a和32 a)杨树人工林为研究对象,通过野外观测、室内浸水法对不同林龄枯落物蓄积量以及最大持水量(率)、有效拦蓄量(率)等持水性能指标进行了定量研究。结果表明:(1) 不同林龄枯落物蓄积量、最大持水量和有效拦蓄量均呈27 a>15 a>32 a>19 a>12 a,分别介于8.32~26.12 t·hm-2、24.03~60.89 t·hm-2和19.85~49.15 t·hm-2,27 a林龄成熟林枯落物一致表现为最佳。枯落物蓄积量、林分特征是影响最大持水量、有效拦蓄量的主要因素。(2) 枯落物最大持水率和有效拦蓄率表现为12 a>19 a>15 a>27 a>32 a,范围在228.37%~288.67%和188.18%~238.48%,林龄对最大持水率和有效拦蓄率影响不显著,主要受林木类型影响。研究结果可为该区防沙治沙生态工程建设及其生态效益评价提供科学依据。

本文引用格式

刘琳,熊东红,张宝军,袁勇,张闻多 . 拉萨河谷杨树人工林枯落物蓄积特征及持水性能[J]. 干旱区研究, 2021 , 38(6) : 1674 -1682 . DOI: 10.13866/j.azr.2021.06.19

Abstract

Litter is an important functional layer with hydrological benefits for forests. It can effectively perform ecosystem functions, such as increasing surface roughness, capturing precipitation, and improving soil structure, thus promoting water retention function in the soil. Total litter amount and water-holding capabilities of Populus plantations in Lhasa River Valley are important for exploring water conservation capacity of Tibetan plateau plantations. Five different stand ages (12 a, 15 a, 19 a, 27 a, and 32 a) of Populus plantations were investigated in the Lhasa River Valley area. Total litter storage capacity was determined using harvesting methods. Water-holding performance indicators, such as maximum water-holding capacity, maximum water-holding rate, modified interception amount, and modified interception rate, were measured using the immersion method. We found the following results: (1) Total litter storage capacity, maximum water-holding capacity, and modified interception amount of the five stand ages all showed 27 a>15 a>32 a>19 a>12 a, which ranged from 8.32 to 26.12 t·hm-2, 24.03 to 60.89 t·hm-2 and 19.85 to 49.15 t·hm-2, respectively. The litter of 27 a had the best water-holding capacity. We found total litter storage capacity and stand characteristics were the main factors affecting maximum water-holding capacity and effective interception. (2) Maximum water-holding rate and modified interception rate of litters exhibited 12 a>19 a>15 a>27 a>32 a, ranging from 228.37% to 288.67% and 188.18% to 238.48%, respectively. The maximum water-holding rate and modified interception rate were not significantly influenced by stand age, but mainly influenced by tree type. Our results provide a scientific basis for ecological engineering and its ecological benefits for evaluation in the Lhasa River Valley area.

参考文献

[1] 孙向阳, 王根绪, 吴勇, 等. 川西亚高山典型森林生态系统截留水文效应[J]. 生态学报, 2013, 33(2):501-508.
[1] [ Sun Xiangyang, Wang Genxu, Wu Yong, et al. Hydrologic regime of interception for typical forest ecosystem at subalpine of Western Sichuan, China[J]. Acta Ecologica Sinica, 2013, 33(2):501-508. ]
[2] 胡晓聪, 黄乾亮, 金亮. 西双版纳热带山地雨林枯落物及其土壤水文功能[J]. 应用生态学报, 2017, 28(1):55-63.
[2] [ Hu Xiaocong, Huang Qianliang, Jin Liang. Hydrological functions of the litters and soil of tropical montane rain forest in Xishuangbanna, Yunnan, China[J]. Chinese Journal of Applied Ecology, 2017, 28(1):55-63. ]
[3] 张晓梅, 邸利, 史再军, 等. 甘肃泾川中沟小流域不同坡位刺槐人工林土壤水分特征[J]. 干旱区研究, 2019, 36(5):1300-1308.
[3] [ Zhang Xiaomei, Di li, Shi Zaijun, et al. Soil moisture content under artificial Robinnia pseudoacacia forestat different slope positions in the Zhonggou minor basin, Jingchuan County, Gansu Province[J]. Arid Zone Research, 2019, 36(5):1300-1308. ]
[4] 王美莲, 王飞, 姚晓娟, 等. 不同林龄兴安落叶松枯落物及土壤水文效应研究[J]. 生态环境学报, 2015, 24(6):925-931.
[4] [ Wang Meilian, Wang Fei, Yao Xiaojuan, et al. Hydrological effects of forest litters and soil in Xing’an Larch Forest at different stand ages[J]. Ecology and Environmental Sciences, 2015, 24(6):925-931. ]
[5] 侯贵荣, 毕华兴, 魏曦, 等. 黄土残塬沟壑区3种林地枯落物和土壤水源涵养功能[J]. 水土保持学报, 2018, 32(2):357-363.
[5] [ Hou Guirong, Bi Huaxing, Wei Xi, et al. Water conservation function of litters and soil in three kinds of woodlands in gully region of Loess Plateau[J]. Journal of Soil and Water Consevation, 2018, 32(2):357-363. ]
[6] 张学龙, 金铭, 刘贤德, 等. 祁连山5种典型灌木林枯落物蓄积量及其持水特性[J]. 生态环境学报, 2015, 24(5):735-740.
[6] [ Zhang Xuelong, Jin Ming, Liu Xiande, et al. Litter storage and its water holding capacity characteristics of five typical shrubs in Qilian Mountains[J]. Ecology and Environmental Sciences, 2015, 24(5):735-740. ]
[7] 邓艳, 蒋忠诚, 覃星铭, 等. 岩溶生态系统中不同植被枯落物对土壤理化性质的影响及岩溶效应[J]. 生态学报, 2009, 29(6):3307-3315.
[7] [ Deng Yan, Jiang Zhongcheng, Qin Xingming, et al. Impacts of litter on physical and chemical soil properties and its karst effects on different forested Karst ecosystem[J]. Acta Ecologica Sinica, 2009, 29(6):3307-3315. ]
[8] 范琳杰, 李向义, 李成道, 等. 极端干旱区花花柴(Karelinia caspia)和胡杨(Populus euphratica)叶凋落物分解和养分释放特征[J]. 干旱区研究, 2021, 38(2):479-486.
[8] [ Fan Linjie, Li Xiangyi, Li Chengdao, et al. Decomposition and nutrient release characteristics of Karelinia caspia and Populus euphratica leaf litters in extreme arid regions[J]. Arid Zone Research, 2021, 38(2):479-486. ]
[9] Upton A, Vane C H, Girkin N, et al. Does litter input determine carbon storage and peat organic chemistry in tropical peatlands?[J]. Geoderma, 2018, 326:76-87.
[10] 杨寒月, 张光辉, 张宝军. 黄土丘陵区沟坡典型植物群落枯落物蓄积量及其持水性能[J]. 中国水土保持科学, 2019, 17(3):83-90.
[10] [ Yang Hanyue, Zhang Guanghui, Zhang Baojun. Growth characteristics of typical plant communities on gully slopes in the Losee hilly-gully region[J]. Research of Soil and Water Conservation, 2019, 17(3):83-90. ]
[11] 陈波, 杨新兵, 赵心苗, 等. 冀北山地6种天然纯林枯落物及土壤水文效应[J]. 水土保持学报, 2012, 26(2):196-202.
[11] [ Chen Bo, Yang Xinbing, Zhao Xinmiao, et al. Hydrological effects of six natrual pure forests litters and soil in northern mountain of Hebei provinc[J]. Journal of Soil and Water Consevation, 2012, 26(2):196-202. ]
[12] 张伟, 杨新兵, 张汝松, 等. 冀北山地不同林分枯落物及土壤的水源涵养功能评价[J]. 水土保持通报, 2011, 31(3):208-212.
[12] [ Zhang Wei, Yang Xinbing, Zhang Rusong, et al. Evaluation on water conservation functions of litter and soils under different forests in mountainous area of northern Hebei Province[J]. Bulletin of Soil and Water Conservation, 2011, 31(3):208-212. ]
[13] 王玲, 赵广亮, 周红娟, 等. 八达岭林场不同密度油松人工林枯落物水文效应[J]. 生态环境学报, 2019, 28(9):1767-1775.
[13] [ Wang Ling, Zhao Guangliang, Zhou Hongjuan, et al. Hydrological characteristics of litter in a Pinus tabulaeformis plantation with different densities in Badaling Forest Farm[J]. Ecology and Environmental Sciences, 2019, 28(9):1767-1775. ]
[14] 杨霞, 陈丽华, 康影丽, 等. 辽东低山区5种典型水源涵养林枯落物持水特性[J]. 生态学杂志, 2019, 38(9):2662-2670.
[14] [ Yang Xia, Chen Lihua, Kang Yingli, et al. Water-holding characteristics of litter in five typical water conservation forests in low mountainous areas of eastern Liaoning[J]. Chinese Journal of Ecology, 2019, 38(9):2662-2670. ]
[15] 莫菲, 于澎涛, 王彦辉, 等. 六盘山华北落叶松林和红桦林枯落物持水特征及其截持降雨过程[J]. 生态学报, 2009, 29(6):2868-2876.
[15] [ Mo Fei, Yu Pengtao, Wang Yanhui, et al. The water-holding capacity of litter layers in the forests of Larix principis-rupprechtii and Betula albo-sinensis in Liupan Mountain and their rainfall interception process[J]. Acta Ecologica Sinica, 2009, 29(6):2868-2876. ]
[16] 刘一霖, 温娅檬, 李巧玉, 等. 川西高山峡谷区6种森林枯落物的持水与失水特性[J]. 水土保持学报, 2019, 33(5):151-156.
[16] [ Liu Yilin, Wen Yameng, Li Qiaoyu, et al. Water-holding and water-loss characteristics of six types of forest litter in the alpina gorge region of western Sichuan[J]. Journal of Soil and Water Consevation, 2019, 33(5):151-156. ]
[17] Zhang B B, Xu Q, Gao D Q, et al. Higher soil capacity of intercepting heavy rainfall in mixed stands than in pure stands in riparian forests[J]. Science of the Total Environment, 2019, 658:1514-1522.
[18] 杨家慧, 谭伟, 卯光宪, 等. 黔中不同龄组柳杉人工林枯落物水源涵养能力综合评价[J]. 水土保持学报, 2020, 34(2):296-301.
[18] [ Yang Jiahui, Tan Wei, Mao Guangxian, et al. Water conservation ability of litter in Cryptomeria fortunei plantation with different age groups in central Guizhou[J]. Journal of Soil and Water Consevation, 2020, 34(2):296-301. ]
[19] 高迪, 郭建斌, 王彦辉, 等. 宁夏六盘山不同林龄华北落叶松人工林枯落物水文效应[J]. 林业科学研究, 2019, 32(4):26-32.
[19] [ Gao Di, Guo Jianbin, Wang Yanhui, et al. Hydrological effects of forest litters of Larix principis-rupprechtii plantations with varying ages in Liupanshan of Ningxia, China[J]. Forest Research, 2019, 32(4):26-32. ]
[20] 富丽, 赵锦梅, 李永宁, 等. 陇东黄土高原不同林龄苹果林地枯落物及土壤的水文效应[J]. 水土保持通报, 2018, 38(5):40-45.
[20] [ Fu Li, Zhao Jinmei, Li Yongning, et al. Hydrological effects of litters and soil in apple tree plantation at different stand ages of Longdong Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2018, 38(5):40-45. ]
[21] 王振波, 李嘉欣, 郭义强, 等. 青藏高原山水林田湖草生态保护修复模式——以拉萨河流域为例[J]. 生态学报, 2019, 39(23):8966-8974.
[21] [ Wang Zhenbo, Li Jiaxin, Guo Yiqiang, et al. Ecological protection and restoration model of multi-ecological elements in Qinghai-Tibet Plateau: A case study of Lhasa River Basin[J]. Acta Ecologica Sinica, 2019, 39(23):8966-8974. ]
[22] 常春平, 原立峰. 拉萨河下游河谷区风沙灾害现状、成因及发展趋势探讨[J]. 水土保持研究, 2010, 17(1):122-126.
[22] [ Chang Chunping, Yuan Lifeng. A disscussion on the status, origin and developmental trends of blown-sand in the valley of lower reaches of Lhasa River, Tibet Plateau[J]. Research of Soil and Water Conservation, 2010, 17(1):122-126. ]
[23] 李昂, 高天鹏, 张鸣, 等. 西北风蚀区植被覆盖对土壤风蚀动态的影响[J]. 水土保持学报, 2014, 28(6):120-123.
[23] [ Li Ang, Gao Tianpeng, Zhang Ming, et al. Influences of vegetation cover on dynamic changes of soil wind erosion in wind erosion region of Northwest China[J]. Journal of Soil and Water Consevation, 2014, 28(6):120-123. ]
[24] 刘小娥, 苏世平, 李毅, 等. 黄土高原地区人工林营造—混交林模式生态效益研究[J]. 干旱区研究, 2021, 38(2):380-391.
[24] [ Liu Xiao’e, Su Shiping, Li Yi, et al. Study on the ecological benefits of a plantation mixed forest model in the Loess Plateau[J]. Arid Zone Research, 2021, 38(2):380-391. ]
[25] Xin F M, Yan X L, Zhang C Y, et al. Characteristics of stem sap flow of two poplar species and their responses to environmental factors[J]. Scientia Silvae Sinicae, 2019, 55(2):22-32.
[26] Dai F Q, Lyu Z Q, Liu G C. Assessing soil quality for sustainable cropland management based on factor analysis and fuzzy sets: A case study in the Lhasa River Valley, Tibetan Plateau[J]. Sustainability, 2018, 10(10):3477.
[27] 宝虎, 赵鹏武, 周梅, 等. 大兴安岭南段典型天然林枯枝落叶层及土壤层持水特性研究[J]. 干旱区资源与环境, 2020, 34(2):175-181.
[27] [ Bao Hu, Zhao Pengwu, Zhou Mei, et al. Water holding capacits of litters and soils in typical natural forests in south of Da Xing’an Mountains[J]. Journal of Arid Land Resources and Environment, 2020, 34(2):175-181. ]
[28] 石亮, 舒洋, 张波, 等. 不同龄组兴安落叶松林枯落物的水文效应[J]. 水土保持通报, 2016, 36(5):91-95.
[28] [ Shi Liang, Shu Yang, Zhang Bo, et al. Hydrological effects of litters in Xing’an larch forest at different stand ages[J]. Journal of Soil and Water Conservation, 2016, 36(5):91-95. ]
[29] 马和平, 赵垦田, 杨小林, 等. 拉萨半干旱河谷人工杨树纯林生态增益研究[J]. 安徽农业科学, 2010, 38(32):18204-18207.
[29] [ Ma Heping, Zhao Kentian, Yang Xiaolin, et al. Study on the ecological gain of artificial pure poplar forest in semi-arid valley region of Lasa[J]. Journal of Anhui Agricultural Sciences 2010, 38(32):18204-18207. ]
[30] 李明军, 喻理飞, 杜明凤, 等. 不同林龄杉木人工林植物-凋落叶-土壤C、N、P化学计量特征及互作关系[J]. 生态学报, 2018, 38(21):7772-7781.
[30] [ Li Mingjun, Yu Lifei, Du Mingfeng, et al. C, N, and P stoichiometry and their interaction with plants, litter, and soil in a Cunninghamia lanceolata plantation with different ages[J]. Acta Ecologica Sinica, 2018, 38(21):7772-7781. ]
[31] 赵鸣飞, 薛峰, 吕烨, 等. 黄土高原森林枯落物储量、厚度分布规律及其影响因素[J]. 生态学报, 2016, 36(22):7364-7373.
[31] [ Zhao Mingfei, Xue Feng, Lyu Ye, et al. The effect of environmental factors on the distribution of litter mass and litter depth in forests of loess plateau region[J]. Acta Ecologica Sinica, 2016, 36(22):7364-7373. ]
[32] 郭婧, 喻林华, 方晰, 等. 中亚热带4种森林凋落物量、组成、动态及其周转期[J]. 生态学报, 2015, 35(14):4668-4677.
[32] [ Guo Jing, Yu Linhua, Fang Xi, et al. Litter production and turnover in four types of subtropical forests in China[J]. Acta Ecologica Sinica, 2015, 35(14):4668-4677. ]
[33] 李文影, 满秀玲, 张阳武. 不同林龄白桦次生林土壤特性及其水源涵养功能[J]. 中国水土保持科学, 2009, 7(5):63-69.
[33] [ Li Wen-ying, Man Xiuling, Zhang Yangwu. Soil properties and water conservation function of Betula platyphylla secondary forest with different stand ages[J]. Science of Soil and Water Conservation, 2009, 7(5):63-69. ]
[34] Yuan Y, Li X, Xiong D H, et al. Efects of restoration age on water conservation function and soil fertility quality of restored woodlands in phosphate mined?out areas[J]. Environmental Earth Sciences, 2019, 78(23):1-14.
文章导航

/