基于多变量时间序列模型的锡林郭勒草原参考作物蒸散量预测
收稿日期: 2021-03-01
修回日期: 2021-09-01
网络出版日期: 2021-11-29
基金资助
内蒙古自治区科技计划项目(2019GG023);国家基金重点项目(51539005)
Prediction of reference crop evapotranspiration in Xilinguole grassland based on multivariate time series model
Received date: 2021-03-01
Revised date: 2021-09-01
Online published: 2021-11-29
为探明各气象因素对锡林郭勒草原的参考作物蒸散量影响及对参考作物蒸散量预测,利用内蒙古锡林郭勒草原的6个国家级地面气象站点获取的气象数据与其计算得到的PM-ET0进行关联度分析,按照关联系数从大小排序分别建立基于多变量时间序列CAR(Controlled Auto-regressive)的CAR-ET0模型。结果表明:(1) 各气象因子与PM-ET0关联系数呈现由荒漠草原区-典型草原区-草甸草原区过渡减小的分布,日最低气温、平均气温与PM-ET0关联度最小,平均日照时数与PM-ET0关联度最大,为0.7293。(2) 处于草甸草原区、荒漠草原区、通过输入日照与气温两因子建立的CAR-ET0精度较高;典型草原区还需风速为模型第三因子。(3) 通过模型预测精度验证,CAR-ET0模型预测精度总体高于HS-ET0与PMT-ET0方法,结合关联度分析可得出对当地参考作物蒸散量有显著影响的气象因子,可为锡林郭勒草原气象监测布设方案、参考作物蒸散量确定与草原生态恢复提供理论依据。
冯壮壮,史海滨,苗庆丰,李健男,孙伟,代丽萍 . 基于多变量时间序列模型的锡林郭勒草原参考作物蒸散量预测[J]. 干旱区研究, 2021 , 38(6) : 1650 -1658 . DOI: 10.13866/j.azr.2021.06.16
This study was performed to explore the influence of various meteorological factors on reference crop evapotranspiration and its prediction in Xilinguole grassland. The correlation between the meteorological data of six national ground meteorological stations in Xilinguole grassland of Inner Mongolia and the calculated PM-ET0 was analyzed. A multivariate time series controlled autoregressive (CAR) model was used as a basis for establishing a CAR-ET0 model in accordance with the order of correlation coefficient. Results showed that the correlation coefficient between meteorological factors and PM-ET0 decreased from a desert steppe area to a typical steppe area and a meadow steppe area. The correlation of daily minimum temperature, average temperature, and PM-ET0 was the smallest, whereas the correlation between average sunshine hours and PM-ET0 was the largest, which was 0.7293. In meadow and desert steppes, the accuracy of CAR-ET0 increased when sunshine and temperature were used as inputs. Wind speed was also required as the third factor of the model in a typical grassland area. The verification of model prediction accuracy revealed that the prediction accuracy of the CAR-ET0 model was generally higher than that of HS-ET0 and PMT-ET0 models. Combined with correlation analysis, the meteorological factors with a significant impact on local reference crop evapotranspiration could be obtained. Thus, this study could provide a theoretical basis for designing a meteorological monitoring layout, determining reference crop evapotranspiration, and conducting ecological restoration in Xilinguole grassland.
[1] | 李晨, 崔宁博, 冯禹, 等. 四川省不同区域参考作物蒸散量计算方法的适用性评价[J]. 农业工程学报, 2016, 32(4):127-134, 316. |
[1] | [ Li Chen, Cui Ningbo, Feng Yu, et al. Adaptation evaluation for reference evapotranspiration methods in different regions of Sichuan[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4):127-134, 316. ] |
[2] | Allan R G, Pereira L S, D Raes, et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56[M]. FAO, 1998. |
[3] | Hargreaves G H, Samani Z A. Reference crop evapotranspiration from temperature[J]. American Society of Agricultural Engineers, 1985, 1(2):96-99. |
[4] | Raziei T, Pereira L S. Estimation of ET0 with Hargreaves-Samani and FAO-PM temperature methods for a wide range of climates in Iran[J]. Agricultural Water Management, 2013, 121:1-18. |
[5] | Jabloun M, Sahli A. Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia[J]. Agricultural Water Management, 2008, 95(6):707-715. |
[6] | Popova Z, Kercheva M, Pereira L S. Validation of the FAO methodology for computing ET0 with limited data[J]. Application to South Bulgaria[J]. Irrigation & Drainage, 2010, 55(2):201-215. |
[7] | Allen R G. Self-calibrating method for estimating solar radiation from air temperature[J]. Journal of Hydrologic Engineering, 1997, 2(2):56-67. |
[8] | 张倩, 段爱旺, 高阳, 等. 基于温度资料估算参考作物腾发量的方法比较[J]. 农业机械学报, 2015, 46(2):104-109. |
[8] | [ Zhang Qian, Duan Aiwang, Gao Yang, et al. Comparative analysis of reference evapotranspiration estimationmethods using temperature data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):104-109. ] |
[9] | Ferreira L B, da Cunha F F. New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning[J]. Agricultural Water Management, 2020, 234:106113. |
[10] | Yamaç S S, Todorovic M. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data[J]. Agricultural Water Management, 2020, 228:105875. |
[11] | 崔宁博, 魏俊, 赵璐, 等. 基于MEA-BPNN的西北旱区参考作物蒸散量预报模型[J]. 农业机械学报, 2018, 49(8):228-236, 307. |
[11] | [ Cui Ningbo, Wei Jun, Zhao Lu, et al. Reference crop evapotranspiration prediction model of arid areasof Northwest China based on MEA-BPNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8):228-236, 307. ] |
[12] | 顾世祥, 赵众, 陈晶, 等. 基于高维Copula函数的逐日潜在蒸散量及气象干旱预测[J]. 农业工程学报, 2020, 36(9):143-151. |
[12] | [ Gu Shixiang, Zhao Zhong, Chen Jing, et al. Daily reference evapotranspiration and meteorological drought forecast using high-dimensional Copula joint distribution model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9):143-151. ] |
[13] | 李仙岳, 崔佳琪, 史海滨, 等. 不同时间尺度下冻融灌区地下水埋深CAR模型优选[J]. 农业机械学报, 2020, 51(8):247-254. |
[13] | [ Li Xianyue, Cui Jiaqi, Shi Haibin, et al. CAR model optimization of groundwater depth in freezing-thawing irrigation area under different time scales[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8):247-254. ] |
[14] | 管孝艳, 王少丽, 高占义, 等. 基于多变量时间序列CAR模型的地下水埋深预测[J]. 农业工程学报, 2011, 27(7):64-69. |
[14] | [ Guan Xiaoyan, Wang Shaoli, Gao Zhanyi, et al. Groundwater depth forecast based multi-variate time series CAR mode[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(7):64-69. ] |
[15] | 常军, 李素萍, 李祯, 等. CAR和SVM方法在郑州冬半年大雾气候趋势预测中的试用[J]. 气象与环境科学, 2008, 31(1):16-19. |
[15] | [ Chang Jun, Li Suping, Li Zhen, et al. Application of CAR and SVM to prediction of climatic trend of fog in winterhalf year[J]. Meteorological and Environmental Sciences, 2008, 31(1):16-19. ] |
[16] | 杨强, 王婷婷, 陈昊, 等. 基于MODIS EVI数据的锡林郭勒盟植被覆盖度变化特征[J]. 农业工程学报, 2015, 31(22):191-198, 315. |
[16] | [ Yang Qiang, Wang Tingting, Chen Hao, et al. Characteristics of vegetation cover change in Xilingol League based on MODIS EVI data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22):191-198, 315. ] |
[17] | 王颖, 张科利, 李峰. 基于10年MODIS数据的锡林郭勒盟草原植被覆盖度变化监测[J]. 干旱区资源与环境, 2012, 26(9):165-169. |
[17] | [ Wang Ying, Zhang Keli, Li Feng. Monitoring of fractional vegetation cover change in Xilingol League based on MODIS data over 10 years[J]. Journal of Arid Land Resources and Environment, 2012, 26(9):165-169. ] |
[18] | 王海梅, 白殿奎, 闫军, 等. 锡林郭勒草原不同生态地理区气候干燥度周期变化的小波分析[J]. 内蒙古气象, 2011(3):20-22, 47. |
[18] | [ Wang Haimei, Bai Diankui, Yan Jun, et al. Analysis of wavelet on periodic variation of climatic dryness in different eco-geographical zones in Xilingol Steppe[J]. Meteorology Journal of Inner Mongolia, 2011(3):20-22, 47. ] |
[19] | 马梓策, 于红博, 曹聪明, 等. 锡林郭勒盟潜在蒸散量和干燥指数的变化特征[J]. 中国水土保持科学, 2019, 17(6):19-26. |
[19] | [ Ma Zice, Yu Hongbo, Cao Congming, et al. Variation characteristics of potential evapotranspiration anddrying index in Xilingol League[J]. Science of Soil and Water Conservation, 2019, 17(6):19-26. ] |
[20] | 马梅, 张圣微, 魏宝成. 锡林郭勒草原近30年草地退化的变化特征及其驱动因素分析[J]. 中国草地学报, 2017, 39(4):86-93. |
[20] | [ Ma Mei, Zhang Shengwei, Wei Baocheng. Temporal and spatial pattern of grassland degradation and itsdeterminants for recent 30 years in Xilingol[J]. Chinese Journal of Grassland, 2017, 39(4):86-93. ] |
[21] | 刘及东. 基于气候产草量模型与遥感产草量模型的草地退化研究[D]. 呼和浩特: 内蒙古农业大学, 2010. |
[21] | [ Liu Jidong. Study on Grassland Degradation Based on Climate and Remote Sensing Models of Grass Yield[D]. Hohhot: Inner Mongolia Agricultural University, 2010. ] |
[22] | Tang Q Y, Zhang C X. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research[J]. Insect Science, 2013, 20(2):254-260. |
[23] | 路璐, 王振龙, 杜富慧, 等. 淮北平原基于水文气象多因子的土壤水分动态预测[J]. 水资源与水工程学报, 2019, 30(4):237-243. |
[23] | [ Lu Lu, Wang Zhenlong, Du Fuhui, et al. Dynamic prediction of soil moisture based on hydrometeorologicalmulti-factors in Huaibei Plain[J]. Journal of Water Resources and Water Engineering, 2019, 30(4):237-243. ] |
[24] | 王秋京, 马国忠, 朱海霞, 等. 黑龙江省主要农业气象灾害演变特征及对水稻产量的影响[J]. 灾害学, 2020, 35(1):76-83. |
[24] | [ Wang Qiujing, Ma Guozhong, Zhu Haixia, et al. Variance characteristics of agro-meteorological disasters and effects ofrice yield in Heilongjiang province[J]. Journal of Catastrophology, 2020, 35(1):76-83. ] |
[25] | 刘锋, 魏光辉. 基于灰色关联的水利工程方案模糊优选[J]. 水力发电学报, 2012, 31(1):10-14, 26. |
[25] | [ Liu Feng, Wei Guanghui. Fuzzy optimization of hydraulic project scheme based on improved grey relation analysis[J]. Journal of Hydroelectric Engineering, 2012, 31(1):10-14, 26. ] |
[26] | Fooladmand H R, Zandilak H, Ravanan M H. Comparison of different types of hargreaves equation for estimating monthly evapotranspiration in the south of Iran[J]. Archives of Agronomy and Soil Science, 2008, 54(3):321-330. |
[27] | 曹艳萍, 庞营军, 庞肖杰. 1956—2017年锡林郭勒盟气候变化特征[J]. 干旱地区农业研究, 2019, 37(4):284-290. |
[27] | [ Cao Yanping, Pang Yingjun, Pang Xiaojie. The characteristics of climate change in Xilingol League from 1956 to 2017[J]. Agricultural Research in the Arid Areas, 2019, 37(4):284-290. ] |
[28] | Ren Xiaodong, Diogo. Daily reference evapotranspiration for hyper-arid to moist sub-humid climates in Inner Mongolia, China: II. Trends of ET0 and weather variables and related spatial patterns[J]. Water Resources Management, 2016, 30(11):3793-3814. |
[29] | 唐启义. DPS数据处理系统: 实验设计, 统计分析及数据挖掘[M]. 北京: 科学出版社, 2007. |
[29] | [ Tang Qiyi. DPS Data Processing System: Experimental Design, Statistical Analysis and Data Mining[M]. Beijing: Science Press, 2007. ] |
[30] | 许龙, 刘志辉, 姚俊强, 等. 基于多变量时间序列CAR模型研究[J]. 中国农村水利水电, 2015, 35(6):81-85, 90. |
[30] | [ Xu Long, Liu Zhihui, Yao Junqiang, et al. Based on multivariate time series CAR Model and its application in Hutubi River runoff prediction[J]. China Rural Water and Hydropower, 2015, 35(6):81-85, 90. ] |
[31] | 韩丽娜. 不同空间插值方法在辽西降水空间插值的精度对比分析[J]. 吉林水利, 2017(6):46-50. |
[31] | [ Han Lina. Accuracy analysis of spatial interpolation of precipitation in different areasby means of different spatial interpolation methods[J]. Jilin Water Resources, 2017(6):46-50. ] |
[32] | 杨扬, 杨建宇, 李绍明, 等. 玉米生育期空间插值方法比较[J]. 农业工程学报, 2009, 25(9):163-167, 363. |
[32] | [ Yang Yang, Yang Jianyu, Li Shaoming, et al. Comparison of spatial interpolation methods for maize growth period[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(9):163-167, 363. ] |
[33] | 贾悦, 崔宁博, 魏新平, 等. 基于反距离权重法的长江流域参考作物蒸散量算法适用性评价[J]. 农业工程学报, 2016, 32(6):130-138. |
[33] | [ Jia Yue, Cui Ningbo, Wei Xinping, et al. Applicability evaluation of different algorithms for reference cropevapotranspiration in Yangtze River Basin based on inverse distance weighted method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6 ): 130-138. ] |
[34] | 阿荣, 毕其格, 董振华. 基于MODIS/NDVI的锡林郭勒草原植被变化及其归因[J]. 资源科学, 2019, 41(7):1374-1386. |
[34] | [ A Rong, Bi Qige, Dong Zhenhua. Change of grassland vegetation and driving factors based on MODIS/NDVI in Xilingol, China[J]. Resources Science, 2019, 41(7):1374-1386. ] |
/
〈 | 〉 |