天气与气候

近60 a内蒙古夏季气候变化特征及其对厄尔尼诺的响应

展开
  • 1.内蒙古自治区气象台,内蒙古 呼和浩特 010051
    2.锡林郭勒盟气象局,内蒙古 锡林浩特 026000
李瑞青(1987-),女,高级工程师,主要从事气候变化及其影响研究. E-mail: liruiqing217@126.com

收稿日期: 2021-03-25

  修回日期: 2021-05-24

  网络出版日期: 2021-11-29

基金资助

内蒙古自治区自然科学基金(2019BS04001);内蒙古自治区自然科学基金(2021MS04019);锡林郭勒盟科技计划项目资助(201802)

Characteristics of summer climate change and its response to El Niño in Inner Mongolia during the past 60 years

Expand
  • 1. Meteorological Observatory of Inner Mongolia Autonomous Region, Hohhot 010051, Inner Mongolia, China
    2. Meteorological Bureau of Xilin Gol League, Xilinhaote 026000, Inner Mongolia, China

Received date: 2021-03-25

  Revised date: 2021-05-24

  Online published: 2021-11-29

摘要

内蒙古大部分地区属于温带大陆性季风气候区,气候脆弱、复杂多样。作为中国北方重要的生态安全屏障,在全球变暖的背景下,内蒙古夏季气温降水发生显著变化,该区域对气候变化的敏感性日渐凸显。基于气象站历史观测及全球再分析数据,分析近60 a内蒙古夏季气象要素变化特征及其对厄尔尼诺事件的响应,得出如下结论:(1) 近60 a内蒙古中部及以东大部分地区夏季降水量呈减少趋势,而气温则是全区性增温趋势。(2) 冬季厄尔尼诺指数与次年夏季气象要素的相关性呈年代际变化特征,且东部型厄尔尼诺次年夏季内蒙古大部地区降水偏多,气温偏低;中部型厄尔尼诺次年夏季内蒙古西北部降水偏多,而中东部大部降水偏少,全区气温偏高。(3) 分析不同型厄尔尼诺夏季降水差异的主要原因是2类厄尔尼诺事件中西太平洋副热带高压和异常反气旋环流以及中高纬度环流异常的强度和位置不同引起。东部型厄尔尼诺次年夏季,副高较常年偏南,欧亚中高纬地区双阻型环流异常,其间的低槽冷涡与上游阻高之间的偏北气流引起北冰洋水汽与副高西侧太平洋水汽在华北地区汇合并向东北输送,造成内蒙古降水异常偏多。对于中部型,副高位置较常年偏西偏北使偏南水汽转向东输送,同时中高纬度反气旋环流异常不利于高纬度水汽输送,使内蒙古大部地区水汽输送减小,降水较常年偏少。(4) 2类厄尔尼诺事件次年夏季印度洋海温异常引起的印度夏季风水汽输送对内蒙古夏季降水也有相当的作用。

本文引用格式

李瑞青,宋桂英,迎春 . 近60 a内蒙古夏季气候变化特征及其对厄尔尼诺的响应[J]. 干旱区研究, 2021 , 38(6) : 1601 -1613 . DOI: 10.13866/j.azr.2021.06.12

Abstract

A large part of Inner Mongolia has temperate mainland monsoon climate, which is fragile, complex, and diverse. As an important ecological security barrier in northern China, Inner Mongolia has experienced significant changes in summer temperature and precipitation under the background of global warming, and its sensitivity to climate change is becoming increasingly prominent. In this study, various characteristics of summer meteorological elements and their responses to El Niño events in Inner Mongolia in the past 60 years were analyzed on the basis of the historical observation of meteorological stations and global reanalysis data. The following conclusions were drawn. (1) In the past 60 years, precipitation in most parts of central and eastern Inner Mongolia decreased in summer, whereas temperature in the whole region increased. (2) The correlation between El Niño index in winter and meteorological factors in summer of the following year was characterized by interdecadal variation. In the following summer, eastern El Niño in most areas in Inner Mongolia had more precipitation and lower temperature. Central El Niño had more precipitation in the northwest of Inner Mongolia, less precipitation in most parts of the middle and east, and higher temperature in the whole region. (3) The main reasons of summer precipitation differences in various El Niño types included the different intensities and locations of the subtropical high in the Central and Western Pacific Ocean, abnormal anticyclone circulation, and circulation anomalies at middle and high latitudes in two types of El Niño events. In the following summer of eastern El Niño, the subtropical high was southward compared with that in the past, and double resistance circulation anomalies appeared at middle and high latitudes of Eurasia and Asia. The northerly airflow between the low trough cold vortex and the high upstream resistance caused the water vapor of the Arctic Ocean and the water vapor of the Pacific Ocean on the west side of the subtropical high to converge in North China and be transported to the northeast, resulting in more precipitation in Inner Mongolia. For the central type, the location of the subtropical high was west by north; consequently, water vapor moved from south to east. Anticyclone circulation anomalies at middle and high latitudes are not conducive to water vapor transport at high latitudes, thereby reducing precipitation and water vapor transport in most parts of Inner Mongolia. (4) Water vapor transport in summer monsoon was caused by the sea surface temperature anomaly in the following summer in the Indian Ocean and implicated in summer precipitation in Inner Mongolia.

参考文献

[1] 高涛, 肖苏君, 乌兰. 近47年(1961—2007年)内蒙古地区降水和气温的时空变化特征[J]. 内蒙古气象, 2009, 33(1):3-7, 49.
[1] [ Gao Tao, Xiao Sujun, Wu Lan. Temporal-spatial characteristics of precipitation and temperature in Inner Mongolia for the last 47 years(1961-2007)[J]. Meteorology Journal of Inner Mongolia, 2009, 33(1):3-7, 49. ]
[2] 马爱华, 岳大鹏, 赵景波, 等. 近60 a来内蒙古极端降水时空变化及其影响[J]. 干旱区研究, 2020, 37(1):74-85.
[2] [ Ma Aihua, Yue Dapeng, Zhao Jingbo, et al. Spatiotemporal variation and effect of extreme precipitation in Inner Mongolia in recent 60 years[J]. Arid Zone Research, 2020, 37(1):74-85. ]
[3] 春兰, 秦福莹, 宝鲁, 等. 近55 a内蒙古极端降水指数时空变化特征[J]. 干旱区研究, 2019, 36(4):963-972.
[3] [ Chun Lan, Qin Fuying, Bao Lu, et al. Spatiotemporal variation of extreme precipitation indices in Inner Mongolia in recent 55 years[J]. Arid Zone Research, 2019, 36(4):963-972. ]
[4] 吴英杰, 李玮, 王文君, 等. 基于降水量距平百分率的内蒙古地区干旱特征[J]. 干旱区研究, 2019, 36(4):943-952.
[4] [ Wu Yingjie, Li Wei, Wang Wenjun, et al. Drought characteristics in Inner Mongolia based on precipitation anomaly percentage[J]. Arid Zone Research, 2019, 36(4):943-952. ]
[5] 任志艳, 延军平, 王鹏涛. 1960—2012年内蒙古降水集中度和降水集中期时空变化[J]. 中国沙漠, 2016, 36(3):760-766.
[5] [ Ren Zhiyan, Yan Junping, Wang Pengtao. Spatio-temporal variations of precipitation concentration degree and precipitation concentration period in Inner Mongolia[J]. Journal of Desert Research, 2016, 36(3):760-766. ]
[6] 庞波, 毛文书, 张禄英. 近50年内蒙古夏季降水气候特征分析[J]. 成都信息工程大学学报, 2019, 34(4):428-434.
[6] [ Pang Bo, Mao Wenshu, Zhang Luying. Climatic characteristics of summer precipitation are studied in Inner Mongolia in recent 50 years[J]. Journal of Chengdu University of Information Technology, 2019, 34(4):428-434. ]
[7] 高晶. 内蒙古夏季降水变化特征及其影响因子的研究[D]. 南京: 南京信息工程大学, 2013.
[7] [ Gao Jin. Analysis on the Variation Characteristics and the Influencing Factors of the Summer Precipitation in Inner Mongolia[D]. Nanjing: Nanjing University of Information Science & Technology, 2013. ]
[8] 李瑞青, 吕世华, 韩博. 10个CMIP5模式对亚澳季风环流及其变率的模拟[J]. 热带气象学报, 2013, 29(5):749-758.
[8] [ Li Ruiqing, Lyu Shihua, Han Bo. Simulations of Asian-Australian monsoon circulation and variability by 10 CMIP5 models[J]. Journal of Tropical Meteorology, 2013, 29(5):749-758. ]
[9] Li Ruiqing, Lyu Shihua, Han Bo, et al. Projections of South Asian summer monsoon precipitation based on 12 CMIP5 models[J]. International Journal of Climatology, 2016, 37(1):94-108.
[10] Li Ruiqing, Lyu Shihua, Han Bo, et al. Connections between the South Asian summer monsoon and the tropical sea surface temperature in CMIP5[J]. Journal of Meteorological Research, 2015, 29(1):106-118.
[11] Liu Yanju, Ding Yihui, Song Yafang, et al. Climatological characteristics of the moisture budget and their anomalies over the joining area of Asia and the Indian-Pacific Ocean[J]. Advances in Atmospheric Sciences, 2009, 26(4):642-655.
[12] 范伶俐, 徐峰, 徐华, 等. 春季/夏季型El Nino对中国夏季降水变化的影响[J]. 大气科学学报, 2018, 41(6):819-828.
[12] [ Fan Lingli, Xu Feng, Xu Hua, et al. Spring and summer El Nino events and their influences on summer precipitation in China[J]. Journal of Nanjing Institute of Meteorology, 2018, 41(6):819-828. ]
[13] Chang C P, Zhang Y S, Li Tim. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge[J]. Journal of Climate, 2000, 13(24):4310-4325.
[14] Wang Yi, Yan Zhongwei. Changes of frequency of summer precipitation extremes over the Yangtze River in association with large-scale Oceanic-atmospheric conditions[J]. Advances in Atmospheric Sciences, 2011, 28(5):1118-1128.
[15] Ren Hongli, Jin Feifei. Nino indices for two types of ENSO[J]. Geophysical Research Letters, 2011, 38(4):L04704.
[16] 张人禾, 闵庆烨, 苏京志. 厄尔尼诺对东亚大气环流和中国降水年际变异的影响: 西北太平洋异常反气旋的作用[J]. 中国科学: 地球科学, 2017, 47(5):544-553.
[16] [ Zhang Renhe, Min Qingye, Su Jingzhi. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone[J]. Science China Earth Sciences, 2017, 47(5):544-553. ]
[17] Feng Juan, Chen Wen, Tam C Y, et al. Different impacts of El Nino and El Nino Modoki on China rainfall in the decaying phases[J]. International Journal of Climatology, 2011, 31(14):2091-2101.
[18] Li Xiuzhen, Zhou Wen, Chen Deliang, et al. Water vapor transport and moisture budget over Eastern China: Remote forcing from the two types of El Nino[J]. Journal of Climate, 2014, 27(23):8778-8792.
[19] 吴萍, 丁一汇, 柳艳菊. 厄尔尼诺事件对中国夏季水汽输送和降水分布影响的新研究[J]. 气象学报, 2017, 75(3):371-383.
[19] [ Wu Ping, Ding Yihui, Liu Yanju. A new study of E1 Nino impacts on summertime water vapor transport and rainfall in China[J]. Acta Meteorologica Sinica, 2017, 75(3):371-383. ]
[20] 张人禾. El Nino盛期印度夏季风水汽输送在我国华北地区夏季降水异常中的作用[J]. 高原气象, 1999, 18(4):567-574.
[20] [ Zhang Renhe. The role of Indian summer monsoon water vapor transportation on the summer rainfall anomalies on the Northern part of China during the El Nino mature phase[J]. Plateau Meteorology, 1999, 18(4):567-574. ]
[21] 白小娟, 赵景波. 厄尔尼诺/拉尼娜事件对内蒙古自治区气候的影响[J]. 水土保持通报, 2012, 32(6):245-249.
[21] [ Bai Xiaojuan, Zhao Jingbo. Effects of El Nino/La Nina events on climate in Inner Mongolia autonomous region[J]. Bulletin of Soil and Water Conservation, 2012, 32(6):245-249. ]
[22] 贾艳青, 张勃. 1960—2017年中国北方气候干湿变化及其与ENSO的关系[J]. 地理科学, 2020, 40(12):2115-2124.
[22] [ Jia Yanqing, Zhang Bo. Correlation analysis of variation of dry-wet climate and ENSO in Northern China during 1960-2017[J]. Scientia Geographica Sinica, 2020, 40(12):2115-2124. ]
[23] 徐洁, 王舒, 肖高翔. 不同分型厄尔尼诺事件对新疆汛期降水的影响[J]. 沙漠与绿洲气象, 2016, 10(3):53-58.
[23] [ Xu Jie, Wang Su, Xiao Gaoxiang. El Nino events of different types and their impact on the flood season precipitation in Xinjiang[J]. Desert and Oasis Meteorology, 2016, 10(3):53-58. ]
[24] 赵煜飞, 朱江, 许艳. 近50 a中国降水格点数据集的建立及质量评估[J]. 气象科学, 2014, 34(4):414-420.
[24] [ Zhao Yufei, Zhu Jiang, Xu Yan. Establishment and assessment of the grid precipitation datasets in China for recent 50 years[J]. Journal of the Meteorological Sciences, 2014, 34(4):414-420. ]
[25] Huang Boyin, Thorne Peter W, Banzon Viva F, et al. Extended reconstructed sea surface temperature version 5(ERSSTv5), upgrades, validations, and intercomparisons[J]. Journal of Climate, 2017, 30(20):8179-8205.
[26] Wang Huijun. The instability of the East Asian summer monsoon-ENSO relations[J]. Advances in Atmospheric Sciences, 2002, 19(1):1-11.
[27] 李维京. 1998年大气环流异常及其对中国气候异常的影响[J]. 气象, 1999, 25(4):21-26, 58.
[27] [ Li Weijing. General atmospheric circulation anomaly in 1998 and their impact on climate anomaly in China[J]. Meteorological Monthly, 1999, 25(4):21-26, 58. ]
[28] Yuan Yuan, Yang Song. Impacts of different types of El Nino on the East Asian climate: Focus on ENSO cycles[J]. Journal of Climate, 2012, 25(21):7702-7722.
[29] Xie Shangping, Kosaka Yu, Du Yan, et al. Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review[J]. Advances in Atmospheric Sciences, 2016, 33(4):411-432.
[30] Zhang Renhe. Relations of water vapor transport from Indian Monsoon with that over East Asia and the summer rainfall in China[J]. Advances in Atmospheric Sciences, 2001, 18(5):1005-1017.
[31] 杨洁凡. 欧亚遥相关型对印度夏季风与华北夏季降水关系的影响[D]. 南京: 南京信息工程大学, 2019.
[31] [ Yang Jiefan. Effect on the Relationship between Indian Summer Monsoon and North China Summer Rainfall by Eurasian Teleconnection[D]. Nanjing: Nanjing University of Information Science & Technology, 2019. ]
[32] Xie Shangping, Hu Kaiming, Hafner Jan, et al. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Nino[J]. Journal of Climate, 2009, 22(3):730-747.
[33] 杨金虎, 张强, 刘晓云, 等. 中国典型夏季风影响过渡区夏季降水异常时空特征及成因分析[J]. 地球物理学报, 2019, 62(11):4120-4128.
[33] [ Yang Jinhu, Zhang Qiang, Liu Xiaoyun, et al. Spatial-temporal characteristics and causes of summer precipitation anomalies in the transitional zone of typical summer monsoon, China[J]. Chinese Journal of Geophysics, 2019, 62(11):4120-4128. ]
[34] 姬凯, 王士新, 左洪超, 等. 东亚副热带急流经向位置对中国西北东部盛夏降水的影响[J]. 干旱区研究, 2020, 37(1):10-17.
[34] [ Ji Kai, Wang Shixin, Zuo Hongchao, et al. Effect of meridional position of East Asian subtropical jet on midsummer precipitation in eastern part of Northwest China[J]. Arid Zone Research, 2020, 37(1):10-17. ]
文章导航

/