数值模拟方法在河流冰塞水位模拟中的应用——以黄河三湖河口弯道段为例
收稿日期: 2021-06-07
修回日期: 2021-07-09
网络出版日期: 2021-11-29
基金资助
国家重点研发项目(2019YFC1510504);中央高校基本科研业务费专项资金资助(B210203051)
Numerical simulation of the ice jam stage in the Sanhuhekou bend reach of the Yellow River
Received date: 2021-06-07
Revised date: 2021-07-09
Online published: 2021-11-29
徐凯莉,吕海深,刘名文,朱永华,何超禄,谢冰绮 . 数值模拟方法在河流冰塞水位模拟中的应用——以黄河三湖河口弯道段为例[J]. 干旱区研究, 2021 , 38(6) : 1556 -1562 . DOI: 10.13866/j.azr.2021.06.07
In this study, the open-source numerical river ice model RIVICE was used to simulate the ice jam water level in the Sanhuhekou bend reach of the Yellow River during the break-up period. Its parameters were then subjected to sensitivity analysis. Flow, water level, and ice th ickness were obtained from the Hydrological Yearbook. Results show that the RIVICE model can be utilized to simulate the ice jam water level in the break-up period. The backwater level of an ice jam is highly sensitive to the upstream boundary discharge, indicating the importance of water conservancy projects in flow regulation. Therefore, the established model can provide a scientific theoretical basis for managing water conservancy projects and ice flood control.
[1] | 姚惠明, 秦福兴, 沈国昌, 等. 黄河宁蒙河段凌情特性研究[J]. 水科学进展, 2007, 18(6):893-899. |
[1] | [ Yao Huiming, Qin Fuxing, Shen Guochang, et al. Ice regime characteristics in the Ningxia-Inner Mongolia reach of Yellow River[J]. Advance in Water Science, 2007, 18(6):893-899. ] |
[2] | Pariset E, Hausser R, Aagnon A. Formation of ice covers and ice jams in rivers[J]. Journal of the Hydraulics Division, 1966, 92(HY6):1-24. |
[3] | 河流冰情观测规范: SL 59—2015[S]. 北京: 中国水利水电出版社, 2015. |
[3] | [Specification for Observation of Ice Regime in Rivers: SL 59—2015[S]. Beijing: China Water & Power Press, 2015. ] |
[4] | 史新娟. 黄河内蒙古段河冰过程及热力增长模型研究[D]. 呼和浩特: 内蒙古农业大学, 2013. |
[4] | [ Shi Xinjuan. Ice Process and a Model of the Thermal Growth and Decay of Ice Cover in the Inner Mongolia Reach of the Yellow River[D]. Hohhot: Inner MongoliaAgricultural University, 2013. ] |
[5] | 韩作强, 梁聪聪, 朱春子. 2018—2019年度黄河宁蒙河段凌情特点分析[J]. 中国防汛抗旱, 2020, 30(5):21-24, 29. |
[5] | [ Han Zuoqiang, Liang Congcong, Zhu Chunzi. Analysis of iceregime characteristics in Ningxia-Inner Mongolia section of the Yellow River in2018—2019[J]. China Flood & Drought Management, 2020, 30(5):21-24, 29. ] |
[6] | Flato G M, Gerard R. Calculation of ice jam profiles proceedings[J]. 4th Workshop on River Ice, Montreal, 1986: C-3 (CGU-HS Committee on River Ice Processes and the Environment, Edmonton, Canada). |
[7] | Beltaos S. Numerical computation of river ice jams[J]. Canadian Journal of Civil Engineering, 1993, 20(1):88-99. |
[8] | Andrishak R, Hicks F. Simulating the effects of climate change on the ice regime of the Peace River[J]. Canadian Journal of Civil Engineering, 2008, 35(5):461-472. |
[9] | EC (Environment Canada) RIVICE model-User’s manual[M]. Saskatoon, SK, Canada, Environment Canada Steering Committee, 2003. |
[10] | Shen H T, Wang D S, Lal A M W. Numerical simulation of river ice processes[J]. Journal of Cold Regions Engineering, 1995, 9(3):107-118. |
[11] | Shen H T, Su J, Liu L. SPH simulation of river ice dynamics[J]. Journal of Computational Physics, 2000, 165(2):752-770. |
[12] | Liu L, Li H, Shen H T. A two-dimensional comprehensive river ice model[C]// Proceedings of the 18th IAHR Symposium on River Ice, Sapporo, Japan, 2006. |
[13] | 可素娟, 吕光圻, 任志远. 黄河巴彦高勒河段冰塞机理研究[J]. 水利学报, 2000, 31(7):66-70. |
[13] | [ Ke Sujuan, Lyu Guangqi, Ren Zhiyuan. Study on mechanism of ice jam formation in Bayangaole section of Yellow River[J]. Journal of Hydraulic Engineering, 2000, 31(7):66-70. ] |
[14] | 王军, 章宝平, 陈胖胖, 等. 封冻期冰塞堆积演变的试验研究[J]. 水利学报, 2016, 47(5):693-699. |
[14] | [ Wang Jun, Zhang Baoping, Chen Pangpang, et al. Experimental study of jam accumulation during freezing period[J]. Journal of Hydraulic Engineering, 2016, 47(5):693-699. ] |
[15] | 翟佳伦, 史小红, 刘禹, 等. 乌梁素海冰封期水温与溶解氧浓度变化研究[J]. 干旱区研究, 2021, 38(3):629-639. |
[15] | [ Zhai Jialun, Shi Xiaohong, Liu Yu, et al. Change law of water temperature and dissolved oxygen concentration of Wuliangsu Sea in icebound period[J]. Arid Zone Research, 2021, 38(3):629-639. ] |
[16] | 茅泽育, 吴剑疆, 张磊, 等. 天然河道冰塞演变发展的数值模拟[J]. 水科学进展, 2003, 14(6):700-705. |
[16] | [ Mao Zeyu, Wu Jianjiang, Zhang Lei, et al. Numerical simulation of river ice jam[J]. Advance in Water Science, 2003, 14(6):700-705. ] |
[17] | 冀鸿兰, 石慧强, 牟献友, 等水塘静水冰生消原型研究与数值模拟[J]. 水利学报, 2016, 47(11):1352-1362. |
[17] | [ Ji Honglan, Shi Huiqiang, Mou Xianyou, et al. Study on the pool ice growth-decay and numerical modeling[J]. Journal of Hydraulic Engineering, 2016, 47(11):1352-1362. ] |
[18] | Fu C, Popescu I, Wang C, et al. Challenges in modelling river flow and ice regime on the Ningxia-Inner Mongolia reach of the Yellow River, China[J]. Hydrology & Earth System ences, 2014, 18(3):1225-1237. |
[19] | 李超. 黄河(内蒙古段)河冰生消演变特性及数值模拟研究[D]. 呼和浩特: 内蒙古农业大学, 2015. |
[19] | [ Li Chao. Study on Characteristics River Ice Evolution and Numerical Simulation of The Yellow River (Inner Mongolia Reach)[D]. Hohhot: Inner MongoliaAgricultural University, 2015. ] |
[20] | Beltaos S, Gerard R, Prowse T, et al. River Ice Jams[M]. Burlington, Canada, Water Resources Publication, 1995. |
[21] | Lindenschmidt K-E, Sydor M, Carson R W. Modelling ice cover formation of a lake-river system with exceptionally high flows (Lake St. Martin and Dauphin River, Manitoba)[J]. Cold Regions Science and Technology, 2012, 82:36-48. |
[22] | Lindenschmidt K-E. Numerical Modelling of River-Ice Processes (Model Description), River Ice Processes and Ice Flood Forecasting[M]. Saskatoon, SK, Canada, Springer, 2020: 121-143. |
[23] | Lindenschmidt K-E. Using stage frequency distributions as objective functions for model calibration and global sensitivity analyses[J]. Environmental Modelling and Software, 2017, 92:169-175. |
[24] | Lindenschmidt K-E, Das A, Rokaya P, et al. Ice-jam flood risk assessment and mapping[J]. Hydrological Processes, 2016, 30(21):3754-3769. |
[25] | Nezhikhovskiy R A. Coefficients of roughness of bottom surface on slush-ice cover[J]. In Soviet Hydrology, 1964: 127-150. |
/
〈 | 〉 |