植物与植物生理

新疆额尔齐斯河流域杨树天然林的养分含量分析

展开
  • 1. 国家林业和草原局林产工业规划设计院,北京 100010
    2. 国家林业和草原局森林生态与环境重点实验室,北京 100091
宋经纬(1989-),男,硕士,主要从事生态保护方面研究. E-mail: 385093670@qq.com

收稿日期: 2021-01-14

  修回日期: 2021-04-12

  网络出版日期: 2021-09-24

基金资助

国家林业局“十三五”山体生态修复规划项目(LY2015-97-1)

Nutrient content of five natural poplar forests in the Irtysh River Basin in Xinjiang

Expand
  • 1. Planning and Design Institute of Forest Products Industry of National Forestry and Grassland Administration, Beijing 100010, China
    2. Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Beijing 100091, China

Received date: 2021-01-14

  Revised date: 2021-04-12

  Online published: 2021-09-24

摘要

对新疆额尔齐斯河流域5种主要杨树天然林生物量和器官养分含量分析表明:5种杨树叶片平均N含量为19.36 g·kg-1,平均P含量为2.89 g·kg-1,叶片N含量接近全球和国内陆地植物水平,叶片P含量较高于全球和国内陆地植物平均水平;叶片平均N:P比值为6.83,相对较低于全球和国内陆地植物叶片N:P比值平均水平;叶片N:P比值高于茎干,茎干高于根系。额尔齐斯河杂交杨的叶片K含量最高,苦杨的茎干K含量最高,银白杨的根系K含量最高。5种杨树天然林生物量分布比,即苦杨:额尔齐斯河杂交杨:银灰杨:欧洲黑杨:银白杨为1:1.03:1.15:1.23:1.37,银白杨的生物量分布最高,苦杨的生物量分布最低。

本文引用格式

宋经纬,徐子然,陈家鑫,徐庆华 . 新疆额尔齐斯河流域杨树天然林的养分含量分析[J]. 干旱区研究, 2021 , 38(5) : 1429 -1435 . DOI: 10.13866/j.azr.2021.05.25

Abstract

Our analysis of the biomass and organ nutrient content of five main Populus natural forests in the Irtysh River Basin in Xinjiang reveals that the average N content of the leaves in the five poplar species is 19.36 g·kg-1 and the average P content is 2.89 g·kg-1. The N content of the leaves is close to the levels found in land plants both globally and domestically, whereas the P content of the leaves is higher than the average levels found in global and domestic land plants. The average leaf N/P ratio is 6.83, which is relatively lower than the average levels seen in both global and domestic land plants; the ratio of leaf N/P is higher than that of the stem; and the ratio of stem N/P stem is higher than that of the root. The leaf K content of P. jrtyschensis is the highest, the stem K content of P. laurifolia is the highest, and the K content in the root system of P. alba is the highest. The biomass distribution ratio of the five natural forests—P. laurifolia, P. jrtyschensis, P. canescens, P. nigra, and P. alba—1:1.03:1.15:1.23:1.37. The P. alba forest has the highest biomass distribution, and the P. laurifolia forest has the lowest biomass distribution.

参考文献

[1] 赵文洁, 李凤日, 庄宸, 等. 大兴安岭地区落叶松林碳密度空间分布[J]. 东北林业大学学报, 2014, 42(6): 1-5.
[1] [ Zhao Wenjie, Li Fengri, Zhuang Chen, et al. Spatial distribution of carbon density for larch forest in Daxing’an Mountain[J]. Journal of Northeast Forestry University, 2014, 42(6): 1-5. ]
[2] 茶枝义. 云南省针叶林碳储量及固碳潜力分析[J]. 西部林业科学, 2019, 48(4): 7-12.
[2] [ Cha Zhiyi. Carbon storage and sequestration potential of coniferous forest in Yunnan Province[J]. Western Forestry Science, 2019, 48(4): 7-12. ]
[3] 李奇, 朱建华, 范立红, 等. 西南地区乔木林碳储量及木材生产潜力预测[J]. 生态环境学报, 2018, 27(3): 416-423.
[3] [ Li Qi, Zhu Jianhua, Fan Lihong, et al. Prediction of forest carbon storage and timber yield potential in Southwestern China[J]. Ecology and Environmental Sciences, 2018, 27(3): 416-423. ]
[4] 李发奎, 李金霞, 孙小妹, 等. 黑果枸杞茎叶生长及其生态化学计量特征对灌水施肥的响应[J]. 干旱区研究, 2020, 37(2): 452-461.
[4] [ Li Fakui, Li Jinxia, Sun Xiaomei, et al. Effects of irrigation and fertilization on the stem and leaf growth and ecostoichiometric characteristics of Lycium ruthenicum Murr.[J]. Arid Zone Research, 2020, 37(2): 452-461. ]
[5] 邓博文, 许瑶瑶, 陈逸飞, 等. 中国针叶林优势树种叶片氮磷钾生态化学计量特征及内稳态分析[J]. 林业科学研究, 2020, 33(6): 81-87.
[5] [ Deng Bowen, Xu Yaoyao, Chen Yifei, et al. Stoichiometry and homesotasis of nitrogen, phosphorus and potassium in leaf of dominant tree species in China’s coniferous forests[J]. Forestry Research, 2020, 33(6): 81-87. ]
[6] Dai Wei, Fu Weijun, Jiang Peikun, et al. Spatial pattern of carbon stocks in forest ecosystems of a typical subtropical region of southeastern China[J]. Forest Ecology and Management, 2018, 409: 288-297.
[7] 覃国明, 尹光天, 杨锦昌, 等. 米老排(Mytilaria laosensis)叶C、N、P化学计量比的季节动态与异速生长关系[J]. 分子植物育种, 2020, 18(2): 594-601.
[7] [ Qin Guoming, Yi Guangtian, Yang Jinchang, et al. Seasonal dynamics of leaf C, N and P stoichiometric rations of Mytilaria laosensis and allometric relationship[J]. Molecular Plant Breeding, 2020, 18(2): 594-601. ]
[8] Gusewell S. N: P ratios in terrestrial plants: Variation and functional significance[J]. New Phytologist, 2004, 164: 243-266.
[9] 何茂松, 罗艳, 彭庆文, 等. 新疆67种荒漠植物叶碳氮磷计量特征及其与气候的关系[J]. 应用生态学报, 2019, 30(7): 2171-2180.
[9] [ He Maosong, Luo Yan, Peng Qingwen, et al. Leaf C: N: P stoichiometry of 67 plant species and its relations with climate factors across the deserts in Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2171-2180. ]
[10] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6.
[10] [ He Jinsheng, Han Xingguo. Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2-6. ]
[11] 王飞, 郭树江, 韩富贵, 等. 民勤荒漠植物叶片水分吸收性状研究[J]. 干旱区研究, 2020, 37(5): 1256-1263.
[11] [ Wang Fei, Guo Shujiang, Hsn Fugui, et al. Study on the leaf water absorption characteristics of Minqin Desert plants[J]. Arid Zone Research, 2020, 37(5): 1256-1263. ]
[12] 符义稳, 田大栓, 牛书丽, 等. 氮磷添加和干旱对高寒草甸优势植物叶片化学计量的影响[J]. 北京林业大学学报, 2020, 42(5): 115-123.
[12] [ Fu Yiwen, Tian Dashuan, Niu Shuli, et al. Effects of nitrogen, phosphorus addition and drought on leaf stoichiometry in dominant species of alpine meadow[J]. Journal of Beijing Forestry University, 2020, 42(5): 115-123. ]
[13] 林婷婷. 干旱胁迫对榆树幼苗生长及生态化学计量的影响[D]. 阜新: 辽宁工程技术大学, 2019.
[13] [ Lin Tingting. The Effect of Drought Stress on the Growth and Ecological Stoichiometry of Elm Seedlings[D]. Fuxin: Liaoning Technical University, 2019. ]
[14] 洪文君, 何书奋, 曾德华, 等. 无翼坡垒植物与土壤营养元素及化学计量学特征[J]. 中南林业科技大学学报, 2019, 39(11): 98-103.
[14] [ Hong Wenjun, He Shufen, Zeng Dehua, et al. Nutrient elements and stoichiometry of plants and soils of Hopea exalata[J]. Journal of Central South University of Forestry & Technology, 2019, 39(11): 98-103. ]
[15] 毛宏蕊, 金光泽. 氮添加对典型阔叶红松林净初级生产力的影响[J]. 北京林业大学学报, 2017, 39(8): 42-49.
[15] [ Mao Hongrui, Jin Guangze. Impacts of nitrogen addition on net primary productivity in the typical mixed broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2017, 39(8): 42-49. ]
[16] Yan Zhengbing, Li Xiuping, Tian Di, et al. Nutrient addition affects scaling relationship of leaf nitrogen to phosphorus in Arabidopsis thaliana[J]. Functional Ecology, 2018, 32(12): 2689-2698.
[17] 吴晓成. 新疆额尔齐斯河天然杨柳林生产力与碳密度的研究[D]. 呼和浩特: 内蒙古农业大学, 2009.
[17] [ Wu Xiaocheng. Study on the Productivity and Carbon Density of Natural Poplar and Willow Forests in the Irtysh River in Xinjiang[D]. Hohhot: Inner Mongolia Agricultural University, 2009. ]
[18] 成克武, 臧润国, 周晓芳, 等. 洪水对额尔齐斯河河岸天然林植被的影响研究[J]. 北京林业大学学报, 2006, 28(2): 46-51.
[18] [ Cheng Kewu, Zang Runguo, Zhou Xiaofang, et al. Study on the impact of floods on the natural forest vegetation along the Irtysh River[J]. Journal of Beijing Forestry University, 2006, 28(2): 46-51. ]
[19] 臧润国, 成克武, 李俊清, 等. 天然林生物多样性保育与恢复[M]. 北京: 中国科学技术出版社, 2005.
[19] [ Zang Runguo, Cheng Kewu, Li Junqing, et al. Natural Forest Biodiversity Conservation and Restoration[M]. Beijing: China Science and Technology Press, 2005. ]
[20] 滕清林, 张金海, 高志飞, 等. 基于第九次全国森林资源清查的新疆森林资源管理的实践与思考[J]. 新疆林业, 2020, 64(3): 8-10.
[20] [ Teng Qinglin, Zhang Jinhai, Gao Zhifei, et al. Practice and thinking of Xinjiang forest resources management based on the ninth national forest resources inventory[J]. Forestry of Xinjiang, 2020, 64(3): 8-10. ]
[21] 彭岩, 田雪邻, 张新平, 等. 基于森林连续清查数据的新疆森林质量评价[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 96-102.
[21] [ Peng Yan, Tian Xuelin, Zhang Xinping, et al. Preliminary estimation of forest quality in Xinjiang based on continuous forest resource data[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(5): 96-102. ]
[22] Han W X, Fang J Y, Guo D L, at el. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168: 377-385.
[23] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestria1 and freshwater food webs[J]. Nature, 2000, 408: 578-580.
[24] Reich P B, Oleksyn J. Global patterns of plant learn and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 11001-11006.
[25] 刘小菊, 单奇, 李园园. 喀纳斯泰加林林下72种植物叶片的碳、氮、磷化学计量特征[J]. 生态环境学报, 2020, 29(7): 1302-1309.
[25] [ Liu Xiaoju, Shan Qi, Li Yuanyuan. Leaf carbon, nitrogen and phosphorus stoichiometry in 72 understory plants species in Kanas Taiga[J]. Ecology and Environmental Sciences, 2020, 29(7): 1302-1309. ]
[26] 苍晶, 李唯. 植物生理学[M]. 北京: 高等教育出版社, 2017.
[26] [ Cang Jing, Li Wei. Plant Physiology[M]. Beijing: Higher Education Press, 2017. ]
[27] Liu Weichao, Fu Shuyue, Yan Shengji, et al. Responses of plant community to the linkages in plant-soil C:N:P stoichiometry during secondary succession of abandoned farmlands, China[J]. Journal of Arid Land, 2020, 12(2): 215-226.
[28] 徐新良, 曹明奎, 李克让. 中国森林生态系统植被碳储量时空动态变化研究[J]. 地理科学进展, 2007, 26(6): 1-9.
[28] [ Xu Xinliang, Cao Mingkui, Li Kerang. Temporal-spatial dynamics of carbon storage of forest vegetation in China[J]. Progress in Geography, 2007, 26(6): 1-9. ]
[29] Wright I J, Groom P K, Lamont B B, et a1. Leaf traits relationships in Austra1ian plant species[J]. Functional Plant Biology, 2004, 31: 551-558.
[30] 国家林业和草原局. 中国林业和草原统计年鉴2018[M]. 北京: 中国林业出版社, 2019.
[30] [State Forestry and Grassland Administration. China Forestry and Grassland Statistical Yearbook 2018[M]. Beijing: China Forestry Press, 2019. ]
[31] 李奇, 朱建华, 冯源, 等. 中国森林乔木林碳储量及其固碳潜力预测[J]. 气候变化进展, 2018, 14(3): 287-294.
[31] [ Li Qi, Zhu Jianhua, Feng Yuan, at el. Carbon storage and carbon sequestration potential of the forest in China[J]. Climate Change Research, 2018, 14(3): 287-294. ]
[32] 邱梓轩. 中国陆表森林植被碳汇测计方法与应用研究[D]. 北京: 北京林业大学, 2019.
[32] [ Qiu Zixuan. Study on the Method and Application of Carbon Sink Measurement of China’s Land Surface Forest Vegetation[D]. Beijing: Beijing Forestry University, 2019. ]
[33] 张婷婷, 刘文耀, 黄俊彪, 等. 植物生态化学计量内稳性特征[J]. 广西植物, 2019, 39(5): 701-712.
[33] [ Zhang Tingting, Liu Wenyao, Huang Junbiao, at el. Characteristics of plant ecological stoichiometry homeostasis[J]. Guihaia, 2019, 39(5): 701-712. ]
[34] 彭淑娴, 陈登鹏, 王嘉伟, 等. 全球变化背景下磷生物地球化学循环研究进展[J]. 环境生态学, 2020, 2(12): 1-7, 22.
[34] [ Peng Shuxian, Chen Dengpeng, Wang Jiawei, at el. Progress in phosphorus biogeochemical cycle under global changes[J]. Environmental Ecology, 2020, 2(12): 1-7, 22. ]
文章导航

/