植物根系水力再分配量及影响因素分析
收稿日期: 2020-06-01
修回日期: 2020-07-20
网络出版日期: 2021-09-24
基金资助
国家自然科学基金项目(41977420);国家自然科学基金项目(41671076);宁夏回族自治区重点研发计划项目(2021BEG02009)
Analysis of the magnitude and influencing factors of the hydraulic redistribution of plant roots
Received date: 2020-06-01
Revised date: 2020-07-20
Online published: 2021-09-24
植物根系水力再分配(Hydraulic Redistribution,HR)指水分在根-土界面水势梯度的驱动下,经由植物根系在土壤不同部位之间的被动传输过程。它是植物根系为了适应土壤水分的空间异质性而形成的一种生理调节对策,不仅能够优化植物对水分的利用,而且对生态系统的地球化学循环过程具有一定影响。因此,开展水分限制环境下HR的研究对深入理解干旱区植物生存的生态水文学机理及其调控对策具有重要的意义。基于此,本文通过回顾和分析HR国内外的最新研究动态及进展,分别从HR的发展历程、在生态水文中的作用、量的大小、普遍性和影响因素进行较为系统的评述。利用数据挖掘在全球尺度上对HR定量化描述,发现HR主要发生在较干旱的乔木植物群落中。此外,HR占蒸腾比例介于3%~79%,平均值为32%;从气候因子、植被特征、土壤特性等方面重点讨论了HR的影响因素,发现干燥指数和土壤质地显著影响HR的量(P<0.05)。最后,结合全球变化背景下HR面临的新挑战,提出了当前HR研究面临的难点问题及其在生态水文效应中应重点关注的科学前沿问题。本研究为今后HR的研究提供了一定的借鉴。
杨贵森,黄磊,杨利贞,陈嘉嘉 . 植物根系水力再分配量及影响因素分析[J]. 干旱区研究, 2021 , 38(5) : 1411 -1419 . DOI: 10.13866/j.azr.2021.05.23
The concept of hydraulic redistribution of plant roots (HR) refers to the passive transmission of water between different parts of the soil via plant roots, driven by the water potential gradient at the root-soil interface. It is a physiological regulation strategy employed by plant roots in order to adapt to the spatial heterogeneity of soil moisture. Not only can it optimize the use of water by plants, but it has also a certain impact on the ecosystem’s geochemical cycle. Therefore, the study of HR under water-limited environments is of great significance to understand in depth the ecological hydrological mechanism of plant survival in arid areas and its control strategies. Based on these observations, this paper reviews and analyzes the latest trends and progress in HR research at home and abroad, and compiles a more systematic review encompassing the developmental history of HR, its role in eco-hydrology, its magnitude, universality, and influencing factors. Using data mining to quantitatively describe HR on a global scale, it was found that HR mainly occurs in drier tree plant communities; in addition, HR accounts for 3%-79% of the transpiration process, with an average of 32%. Through the analysis of climatic factors, vegetation andsoil characteristics, and other aspects considered as HR influencing factors, it was found that the aridity index and soil texture have a significant impact on HR (P<0.05). Finally, combined with the new challenges faced by HR in the context of global change, the difficulties faced by current HR research and the frontier issues of science that should be focused on in the ecohydrological effect are proposed. Our study provides some reference for future HR research.
[1] | Neumann R B, Cardon Z G. The magnitude of hydraulic redistribution by plant roots: A review and synthesis of empirical and modeling studies[J]. New Phytologist, 2012, 194(2): 337-352. |
[2] | Magistad O C. Plant and soil relations at and below the wilting percentage[J]. Technique Bulletin of Arizona Agriculture Experiment Station, 1929, 25. https://hdl.handle.net/10150/190526. |
[3] | Molz F J, Peterson C M. Water transport from roots to soil[J]. Agronomy Journal, 1976, 68(6): 901-904. |
[4] | Granier A. Evaluation of transpiration in a douglas-fir stand by means of sap flow measurements[J]. Tree Physiology, 1987, 3(4): 309-320. |
[5] | Jensen R D, Taylor S A, Wiebe H H. Negative transport and resistance to water flow through plants[J]. Plant Physiology, 1961, 36(5): 633-638. |
[6] | Mooney H A, Gulmon S L, Rundel P W, et al. Further observations on the water relations of Prosopis tamarugo the northern Atacama desert[J]. Oecologia, 1980, 44(2): 177-180. |
[7] | Richards J H, Caldwell M M. Hydraulic lift: Substantial nocturnal water transport between soil layers by artemisia tridentata roots[J]. Oecologia, 1987, 73(4): 486-489. |
[8] | Caldwell M M, Richards J H. Hydraulic lift: Water efflux from upper roots improves effectiveness of water uptake by deep roots[J]. Oecologia, 1989, 79(1): 1-5. |
[9] | Yan J, Zhang D, Liu J, et al. Interactions between CO2 enhancement and N addition on net primary productivity and water-use efficiency in a mesocosm with multiple subtropical tree species[J]. Global Change Biology, 2013, 20(7): 2230-2239. |
[10] | Burgess S S O, Adams M A, Turner N C, et al. The redistribution of soil water by tree root systems[J]. Oecologia, 1998, 115(3): 306-311. |
[11] | Schulze E D, Caldwell M M, Canadell J. Downward flux of water through roots (ie inverse hydraulic lift) in dry Kalahari sands[J]. Oecologia, 1998, 115(4): 460-462. |
[12] | Jackson R, Sperry J S, Dawson T E. Root water uptake and transport: Using physiological processes in global predictions[J]. Trends in Plant Science, 2000, 5(11): 482-488. |
[13] | 薛小红, 牛得草, 傅华, 等. 沙打旺根系提水作用及其机理研究[J]. 西北植物学报, 2007, 27(11): 2269-2274. |
[13] | [ Xue Xiaohong, Niu Decao, Fu Hua, et al. Studies on mechanism of hydraulic lift by Astragalus adsurgens[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(11): 2269-2274. ] |
[14] | 鱼腾飞, 冯起, 司建华, 等. 胡杨根系水力再分配的模式、大小及其影响因子[J]. 北京林业大学学报, 2014, 36(2): 22-29. |
[14] | [ Yu Tengfei, Feng Qi, Si Jianhua, et al. Patterns, magnitude and controlling factors of hydraulic redistribution by Populus euphratica roots[J]. Journal of Beijing Forestry University, 2014, 36(2): 22-29. ] |
[15] | 朱丽, 黄刚, 唐立松, 等. 梭梭根系的水分再分配特征对其生理和形态的影响[J]. 干旱区研究, 2017, 34(3): 638-647. |
[15] | [ Zhu Li, Huang Gang, Tang Lisong, et al. Root internal hydraulic redistribution and its effects on the physiological form and plant growth of Haloxylon ammodendron[J]. Arid Zone Research, 2017, 34(3): 638-647. ] |
[16] | Belnap J, Hawkes C V, Firestone M K. Boundaries in Miniature: Two examples from soil[J]. BioScience, 2003, 53(8): 739-749. |
[17] | Wang Y Y, Jia B, Xie Z, et al. Impacts of hydraulic redistribution on eco-hydrological cycles: A case study over the Amazon basin[J]. Science China-Earth Sciences, 2018, 61(9): 1330-1340. |
[18] | Prieto I, Armas C, Pugnaire F I. Water release through plant roots: New insights into its consequences at the plant and ecosystem level[J]. New Phytologist, 2012, 193(4): 830-84. |
[19] | Lee J E, Oliveira R S, Dawson T E, et al. Root functioning modifies seasonal climate[J]. Proceedings of the National Academy of Sciences, 2006, 102(49): 17576-17581. |
[20] | Ryel R J, Caldwell M M, Yoder C K, et al. Hydraulic redistribution in a stand of Artemisia tridentata: Evaluation of benefits to transpiration assessed with a simulation model[J]. Oecologia, 2002, 130(2): 173-184. |
[21] | Lee E, Kumar P, Barrongafford G, et al. Impact of hydraulic redistribution on multispecies vegetation water use in a semiarid savanna ecosystem. An experimental and modeling synthesis[J]. Water Resources Research, 2018, 54(6): 4009-4027. |
[22] | Wang G. Assessing the potential hydrological impacts of hydraulic redistribution in Amazonia using a numerical modeling approach[J]. Water Resources Research, 2011, 47(2): 2528-2539. |
[23] | Kizito F, Dragila M I, Senè M, et al. Hydraulic redistribution by two semi-arid shrub species: Implications for Sahelian agro-ecosystems[J]. Journal of Arid Environments, 2012, 83(2): 69-77. |
[24] | Yu K L, Odorico P D. Climate, vegetation, and soil controls on hydraulic redistribution in shallow tree roots[J]. Advances in Water Resources[J]. 2014, 66(2): 70-80. |
[25] | Yu T F, Feng Q, Si J, et al. Depressed hydraulic redistribution of roots more by stem refilling than by nocturnal transpiration for, Populus euphratica, Oliv in situ measurement[J]. Ecology and Evolution, 2018, 8(5): 2607-2616. |
[26] | Zhang W Q, Zwiazek J J. Hydraulic redistribution in slender wheatgrass (Elymus trachycaulus Link Malte) and yellow sweet clover (Melilotus officinalis L. ): Potential benefits for land reclamation[J]. Agronomy, 2018, 8(12): 20-30. |
[27] | 刘美珍, 孙建新, 蒋高明, 等. 植物-土壤系统中水分再分配作用研究进展[J]. 生态学报, 2006, 26(5): 256-263. |
[27] | [ Liu Meizhen, Sun Jianxin, Jiang Gaoming, et al. Hydraulic redistribution in plant-soil systems[J]. Acta Ecologica Sinica, 2006, 26(5): 1550-1557. ] |
[28] | Fu C S, Lee X H, Griffis T J, et al. Influences of root hydraulic redistribution on N2O emissions at AmeriFlux Sites[J]. Geophysical Research Letters, 2018, 45(10): 5135-5143. |
[29] | Meinzer F C, Brooks J R, Bucci S, et al. Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types[J]. Tree Physiology, 2004, 24(8): 919-928. |
[30] | Prieto I, Armas C, Pugnaire F I. Hydraulic lift promotes selective root foraging in nutrient-rich soil patches[J]. Functional Plant Biology, 2012, 39(9): 804-812. |
[31] | Prieto I, Ryel R J. Internal hydraulic redistribution prevents the loss of root conductivity during drought[J]. Tree Physiology, 2014, 34(1): 39-48. |
[32] | Burgess S S O, Adams M A, Bleby T M. Measurement of sap flow in roots of woody plants: A commentary[J]. Tree Physiology, 2000, 20(13): 909-913. |
[33] | Scholz F G, Bucci S J, Goldstein G, et al. Biophysical and life-history determinants of hydraulic lift in Neotropical savanna trees[J]. Functional Ecology, 2008, 22(5): 773-786. |
[34] | Scholz F G, Bucci S J, Hoffmann W A, et al. Hydraulic lift in a Neotropical savanna: Experimental manipulation and model simulations[J]. Agricultural and Forest Meteorology, 2010, 150(4): 629-639. |
[35] | Emerman S H, Dawson T E. Hydraulic lift and its influence on the water content of the rhizosphere: An example from sugar maple, Acer saccharum[J]. Oecologia, 1996, 108(2): 273-278. |
[36] | Scott R L, Cable W L, Hultine K R. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna[J]. Water Resources Research, 2008, 44(2): 717-723. |
[37] | Muler A L, Van Etten E J B, Stock W D, et al. Can hydraulically redistributed water assist surrounding seedlings during summer drought?[J]. Oecologia, 2018, 187, 625-641. |
[38] | Hultine K R, Williams D G, Burgess S S O, et al. Contrasting patterns of hydraulic redistribution in three desert phreatophytes[J]. Oecologia, 2003, 135(2): 167-175. |
[39] | Warren J M, Meinzer F C, Brooks J R, et al. Hydraulic redistribution of soil water in two old-growth coniferous forests: Quantifying patterns and controls[J]. New Phytologist, 2007, 173(4): 753-765. |
[40] | Domec J C, King J S, Noormets A, et al. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange[J]. New Phytologist, 2010, 187(1): 171-183. |
[41] | Scholz F C, Bucci S J, Goldstein G, et al. Temporal dynamics of stem expansion and contraction in savanna trees: Withdrawal and recharge of stored water[J]. Tree Physiology, 2008, 28(3): 469-480. |
[42] | Leffler A J, Peek M S, Ryel R J, et al. Hydraulic redistribution through the root systems of senesced plants[J]. Ecology, 2005, 86(3): 633-642. |
[43] | Siqueira M, Katul G, Porporato A, Onset of water stress, hysteresis in plant conductance, and hydraulic lift: Scaling soil water dynamics from millimeters to meters[J]. Water Resources Research, 2008, 44(1): 358-366. |
[44] | Yoder C K, Nowak R S. Hydraulic lift among native plant species in the Mojave Desert[J]. Plant and Soil, 1999, 215(1): 93-102. |
[45] | Wang X, Tang C, Guppy C N, et al. The role of hydraulic lift and subsoil P placement in P uptake of cotton[J]. Plant and Soil, 2009, 325(1-2): 263-275. |
[46] | Schipper B, Schroth M N, Hildebra D C, Emanation of water from underground plant parts[J]. Plant and Soil, 1967, 27(1): 81-91. |
[47] | Prieto I, Kikvidze Z, Pugnaire F I. Hydraulic lift: Soil processes and transpiration in the Mediterranean leguminous shrub Retama sphaerocarpa (L. ) Boiss[J]. Plant and Soil, 2010, 329(1-2): 447-456. |
[48] | Genuchten V M A. Closed-form equation for predicting the hydraulic conductivity of unsaturated Soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. |
[49] | Bristow K L, Campbell G S, Calissendorff C. The effects of texture on the resistance to water movement within the rhizosphere[J]. Soil Science Society of America Journal, 1984, 48(2): 266-270. |
[50] | Li Y, Xu H U, Cohen S. Long-term hydraulic acclimation to soil texture and radiation load in cotton[J]. Plant Cell and Environment, 2005, 28(4): 492-499. |
[51] | Dawson T E. Hydraulic lift and water use by plants: Implications for water balance, performance and plant-plant interactions[J]. Oecologia, 1993, 95(4): 565-574. |
[52] | Ludwig F, Dawson T E, Kroon H D, et al. Hydraulic lift in Acacia tortilis trees on an East African savanna[J]. Oecologia, 2003, 134(3): 293-300. |
/
〈 | 〉 |