土壤资源

亚寒带荒漠草原不同树种人工林土壤生态化学计量特征

展开
  • 1. 中国科学院新疆生态与地理研究所,新疆 乌鲁木齐 830011
    2. 中国科学院大学,北京 101408
    3. 国家荒漠-绿洲生态建设工程技术研究中心,新疆 乌鲁木齐 830011
娄泊远(1995-),男,硕士研究生,主要从事水土保持和荒漠化防治相关研究. E-mail: louboyuan18@mails.ucas.ac.cn

收稿日期: 2021-02-04

  修回日期: 2021-06-30

  网络出版日期: 2021-09-24

基金资助

中国科学院战略性先导科技专项(A类)(XDA20030102);中国科学院关键技术人才项目(“一带一路”荒漠化防治技术模式研究)

Characteristics of soil ecological stoichiometry of different tree spcies in sub-frigid desert steppe

Expand
  • 1. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. University of Chinese Academy of Sciences, Beijing 101408, China
    3. National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi 830011, Xinjiang, China

Received date: 2021-02-04

  Revised date: 2021-06-30

  Online published: 2021-09-24

摘要

为了阐明亚寒带荒漠草原不同树种人工林间土壤养分含量及生态化学计量特征的差异,通过野外调查与室内分析相结合的方法,在哈萨克斯坦首都努尔苏丹选取种植白桦、樟子松、梣叶槭3种不同树种,林龄为11 a的亚寒带荒漠草原人工林为研究对象,以裸地为对照,对其土壤养分含量及其生态化学计量特征进行了分析。结果表明:(1) 土壤养分含量受树种的影响,但不同树种间生态化学计量特征差异不显著。(2) 种植人工林后,不同树种人工林土壤有机碳与全氮含量均显著增加,针叶林与阔叶林土壤表层有机C、全N含量差异显著。(3) 土壤C、N、P含量呈极显著正相关关系,C含量是C:N、C:P的控制因子,N含量是N:P的控制因子。研究区种植人工林后,虽然土壤养分含量显著增加,但是总体含量仍小于全球平均水平,当地土壤养分仍处于匮乏状态。N是该地区养分循环和植物生长的限制性因素,在人工林生长过程中适当施用氮肥,可加快人工林生长和生态恢复进程。本研究可为哈萨克斯坦首都努尔苏丹的人工林建设和持续经营管理提供科学依据。

本文引用格式

娄泊远,王永东,闫晋升,艾柯代·艾斯凯尔 . 亚寒带荒漠草原不同树种人工林土壤生态化学计量特征[J]. 干旱区研究, 2021 , 38(5) : 1385 -1392 . DOI: 10.13866/j.azr.2021.05.20

Abstract

In order to explore the effects of different tree spices on soil nutrients and ecological stoichiometry in sub-frigid desert steppe, combining the method of field investigation and indoor analysis, we analyzed soil nutrients (C、N、P、K) and ecological stochiometry of soil for Nursultan, capital of Kazakhstan of three different tree spcies. The results shouwd that: (1) Soil nutrient content was affected by tree species, but there was no significant difference in ecological stoichiometry among different tree species. (2) Soil organic carbon and total nitrogen contents in different tree species plantations increased significantly after plantation. The differences of soil surface organic carbon and total N contents between coniferous forest and broad-leaved forest were significant. (3) Soil C, N and P contents showed extremely significant positive correlation, and C content was the controlling factor of C: N and C:P, while N content was the controlling factor of N:P. Although the soil nutrient content increased significantly, the overall level was still lower than the global average level, and the local soil nutrient content was still in a state of shortage. N is the limiting factor of nutrient cycle and plant growth in this area. Appropriate application of nitrogen fertilizer in the growth process of plantation can accelerate the growth and ecological restoration process of shelterbelt. This study can provide scientific basis for the protection forest construction and sustainable management in Nursultan, capital of Kazakhstan.

参考文献

[1] 刘蓉, 张卫国, 江小雷, 等. 垂穗披碱草群落退化演替的植被特性及其与土壤性状的相关性研究[J]. 草业科学, 2010, 27(10): 96-103.
[1] [ Liu Rong, Zhang Weiguo, Jiang Xiaolei, et al. Study on the characteristics of degradation succession of Elymus nutans community and its correlation to soil properties[J]. Pratacultural Science, 2010, 27(10): 96-103. ]
[2] 庞圣江, 张培, 贾宏炎, 等. 桂西北不同森林类型土壤生态化学计量特征[J]. 中国农学通报, 2015, 31(1): 17-23.
[2] [ Pang Shengjiang, Zhang Pei, Jia Hongyan, et al. Research on soil ecological stoichiometry under different forest types in Northwest Guangxi[J]. Chinese Agricultural Science Bulletin, 2015, 31(1): 17-23. ]
[3] 朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33(15): 4674-4682.
[3] [ Zhu Qiulian, Xing Xiaoyi, Zhang Hong, et al. Soil ecological stoichiometry under different vegetation area on loess hillygully region[J]. Acta Ecologica Sinica, 2013, 33(15): 4674-4682. ]
[4] Han Wenxuan, Fang Jingyun, Guo Dali, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385.
[5] He Jinsheng, Fang Jingyun, Wang Zhiheng, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia, 2006, 149(1): 115-122.
[6] 刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J]. 植物生态学报, 2010, 34(1): 64-71.
[6] [ Liu Xingzhao, Zhou Guoyi, Zhang Deqiang, et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 64-71. ]
[7] 吴统贵, 陈步峰, 肖以华, 等. 珠江三角洲3种典型森林类型乔木叶片生态化学计量学[J]. 植物生态学报, 2010, 34(1): 58-63.
[7] [ Wu Tonggui, Chen Bufeng, Xiao Yihua, et al. Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 58-63. ]
[8] 赵亚芳, 徐福利, 王渭玲, 等. 华北落叶松根茎叶碳氮磷含量及其化学计量学特征的季节变化[J]. 植物学报, 2014, 49(5): 560-568.
[8] [ Zhao Yafang, Xu Fuli, Wang Weiling, et al. Seasonal variation in contents of C, N and P and stoichiometry characteristics in fine roots, stems and needles of Larix principis-rupprechti[J]. Chinese Bulletin of Botany, 2014, 49(5): 560-568. ]
[9] Cao Yang, Chen Yunming. Ecosystem C: N: P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China[J]. Ecological Engineering, 2017, 105: 125-132.
[10] 安静, 王文杰, 王洪岩, 等. 人工林和农田对东北地区土壤碳、氮含量及相关指标垂直分布的影响[J]. 植物研究, 2012, 32(3): 331-338.
[10] [ An Jing, Wang Wenjie, Wang Hongyan, et al. Effect of forest and farm on vertical patterns of soil carbon, nitrogen and other parameters in Northeast China[J]. Bulletin of Botanical Research, 2012, 32(3): 331-338. ]
[11] 牛瑞龙, 高星, 徐福利, 等. 秦岭中幼林龄华北落叶松针叶与土壤的碳氮磷生态化学计量特征[J]. 生态学报, 2016, 36(22): 7384-7392.
[11] [ Niu Ruilong, Gao Xing, Xu Fuli, et al. Carbon, nitrogen, and phosphorus stoichiometric characteristics of soil and leaves from young and middle aged Larix principis-rupprechtii growing in a Qinling Mountain plantation[J]. Acta Ecologica Sinica, 2016, 36(22): 7384-7392. ]
[12] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947.
[12] [ Wang Shaoqiang, Yu Guirui. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. ]
[13] Achat D L, Bakker M R, Augusto L, et al. Phosphorus status of soils from contrasting forested ecosystems in southwestern Siberia: Effects of microbiological and physicochemical properties[J]. Biogeosciences, 2013, 10(121): 733-752.
[14] 俞月凤, 彭晚霞, 宋同清, 等. 喀斯特峰丛洼地不同森林类型植物和土壤C、N、P化学计量特征[J]. 应用生态学报, 2014, 25(4): 947-954.
[14] [ Yu Yuefeng, Peng Wanxia, Song Tongqing, et al. Stoichiometric characteristics of plant and soil C, N and P in different forest types in depressions between Karst hills, southwest China[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 947-954. ]
[15] 李茜. 子午岭林区不同天然次生林生态系统C、N、P化学计量特征及其季节变化[D]. 北京: 中国科学院大学, 2018.
[15] [ Li Qian. C, N, P Stoichiometry and Seasonal Variation of Different Natural Secondary Forest Ecosystem in Ziwuling Forest Area[D]. Beijing: University of Chinese Academy of Sciences, 2018. ]
[16] 任书杰, 于贵瑞, 陶波, 等. 兴安落叶松(Larix gmelinii Rupr. )叶片养分的空间分布格局[J]. 生态学报, 2009, 29(4): 1899-1906.
[16] [ Ren Shujie, Yu Guirui, Tao Bo, et al. Spatial patterns for variations in leaf nutrient contents of Dahurian Larch (Larix gmelinii Rupr. )[J]. Acta Ecologica Sinica, 2009, 29(4): 1899-1906. ]
[17] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001-11006.
[18] Lars O. Hedin. Global organization of terrestrial plant-nutrient interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10849-10850.
[19] 曾全超, 李鑫, 董扬红, 等. 陕北黄土高原土壤性质及其生态化学计量的纬度变化特征[J]. 自然资源学报, 2015, 30(5): 870-879.
[19] [ Zeng Quanchao, Li Xin, Dong Yanghong, et al. Ecological stoichiometry characteristics and physical-chemical properties of soils at different latitudes on the Loess Plateau[J]. Journal of Natural Resources, 2015, 30(5): 870-879. ]
[20] 杨慧, 涂春艳, 李青芳, 等. 岩溶区次生林地不同地貌部位土壤C、N、P化学计量特征[J]. 南方农业学报, 2015, 46(5): 777-781.
[20] [ Yang Hui, Tu Chunyan, Li Qingfang, et al. Analysis of C, N and P stoichiometry of secondary forest in different landforms in Karst area[J]. Journal of Southern Agriculture, 2015, 46(5): 777-781. ]
[21] 李路, 常亚鹏, 许仲林. 天山雪岭云杉林土壤CNP化学计量特征随水热梯度的变化[J]. 生态学报, 2018, 38(22): 8139-8148.
[21] [ Li Lu, Chang Yapeng, Xu Zhonglin. Stoichiometric characteristics of Picea schrenkiana forests with a hydrothermal gradient and their correlation with soil physicochemical factors on Tianshan Mountain[J]. Acta Ecologica Sinica, 2018, 38(22): 8139-8148. ]
[22] 程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展[J]. 生态学报, 2010, 30(6): 1628-1637.
[22] [ Cheng Bin, Zhao Yongjun, Zhang Wenguang, et al. The research advances and prospect of ecological stoichiometry[J]. Acta Ecologica Sinica, 2010, 30(6): 1628-1637. ]
[23] 徐满厚, 薛娴. 气候变暖对高寒地区植物生长与物候影响分析[J]. 干旱区资源与环境, 2013, 27(3): 137-141.
[23] [ Xu Manhou, Xue Xian. Analysis on the effects of climate warming on growth and phenology of alpine plants[J]. Journal of Arid Land Resources and Environment, 2013, 27(3): 137-141. ]
[24] 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2008.
[24] [ Bao Shidan. Study of Analysis of Soil and Agrochemistry[M]. 3rd ed. Beijing: China Agricuture Press, 2008. ]
[25] 马强, 宇万太, 赵少华, 等. 黑土农田土壤肥力质量综合评价[J]. 应用生态学报, 2004, 15(10): 1916-1920.
[25] [ Ma Qiang, Yu Wantai, Zhao Shaohua, et al. Comprehensive evaluation of cultivated black soil fertility[J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1916-1920. ]
[26] 张泰东, 王传宽, 张全智. 帽儿山5种林型土壤碳氮磷化学计量关系的垂直变化[J]. 应用生态学报, 2017, 28(10): 3135-3143.
[26] [ Zhang Taidong, Wang Chuankuan, Zhang Quanzhi. Vertical variation in stoichiometric relationships of soil carbon, nitrogen and phosphorus in five forest types in the Maoershan region, Northeast China[J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3135-3143. ]
[27] 王薪琪, 王传宽, 韩轶. 树种对土壤有机碳密度的影响: 5种温带树种同质园试验[J]. 植物生态学报, 2015, 39(11): 1033-1043.
[27] [ Wang Xinqi, Wang Chuankuan, Han Yi. Effects of tree species on soil organic carbon density: A common garden experiment of five temperate tree species[J]. Chinese Journal of Plant Ecology, 2015, 39(11): 1033-1043. ]
[28] 张向茹, 马露莎, 陈亚南, 等. 黄土高原不同纬度下刺槐林土壤生态化学计量学特征研究[J]. 土壤学报, 2013, 50(4): 818-825.
[28] [ Zhang Xiangru, Ma Lusha, Chen Yanan, et al. Ecological stoichiometry characteristics of Robinia preudoacacia forest soil in different latitudes of Loess Plateau[J]. Acta Pedologica Sinica, 2013, 50(4): 818-825. ]
[29] 魏孝荣, 邵明安. 黄土高原沟壑区小流域坡地土壤养分分布特征[J]. 生态学报, 2007, 27(2): 603-612.
[29] [ Wei Xiaorong, Shao Mingan. The distribution of soil nutrients on sloping land in the gully region watershed of the Loess Plateau[J]. Acta Ecologica Sinica, 2007, 27(2): 603-612. ]
[30] Joseph, Mitchell, Craine, et al. Plant nitrogen and phosphorus limitation in 98 North American grassland soils[J]. Plant & Soil, 2010, 334(1-2): 73-84.
[31] 任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12): 2665-2673.
[31] [ Ren Shujie, Yu Guirui, Tao Bo, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science, 2007, 28(12): 2665-2673. ]
[32] 赵海燕, 张剑, 刘冬, 等. 不同沼泽湿地土壤碳氮磷生态化学计量学特征及其影响因素[J]. 干旱区研究, 2020, 37(3): 618-626.
[32] [ Zhao Haiyan, Zhang Jian, Liu Dong, et al. Characteristics and determining factors for ecological stoichiometry of soil carbon, nitrogen, and phosphorus in different marsh wetlands[J]. Arid Zone Research, 2020, 37(3): 618-626. ]
[33] 张春华, 王宗明, 居为民, 等. 松嫩平原玉米带土壤碳氮比的时空变异特征[J]. 环境科学, 2011, 32(5): 1407-1414.
[33] [ Zhang Chunhua, Wang Zongming, Ju Weimin, et al. Spatial and temporal variability of soil C/N ratio in Songnen Plain maize belt[J]. Environmental Science, 2011, 32(5): 1407-1414. ]
[34] 秦瑞敏, 温静, 张世雄, 等. 模拟增温对青藏高原高寒草甸土壤C、N、P化学计量特征的影响[J]. 干旱区研究, 2020, 37(4): 908-916.
[34] [ Qin Ruimin, Wen Jing, Zhang Shixiong, et al. Impacts of simulated warming on C, N, and P stoichiometric characteristics of alpine meadow soil in the Qinghai-Tibetan Plateau[J]. Arid Zone Research, 2020, 37(4): 908-916. ]
[35] 曹娟, 闫文德, 项文化, 等. 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征[J]. 林业科学, 2015, 51(7): 1-8.
[35] [ Cao Juan, Yan Wende, Xiang Wenhua, et al. Stoichiometry characterization of soil C, N, and P of Chinese Fir plantations at three different ages in Huitong, Hunan Province, China[J]. Scientia Silvae Sinicae, 2015, 51(7): 1-8. ]
[36] 朱平宗, 张光辉, 杨文利, 等. 红壤区林地浅沟不同植被类型土壤生态化学计量特征[J]. 水土保持研究, 2020, 27(6): 60-65.
[36] [ Zhu Pingzong, Zhang Guanghui, Yang Wenli, et al. Characteristics of soil ecological stoichiometry of different vegetation types in ephemeral gully of forestland in red soil region[J]. Research of Soil and Water Conservation, 2020, 27(6): 60-65. ]
[37] Cory C. Cleveland, Daniel Liptzin. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235-252.
[38] 曾全超, 李鑫, 董扬红, 等. 黄土高原延河流域不同植被类型下土壤生态化学计量学特征[J]. 自然资源学报, 2016, 31(11): 1881-1891.
[38] [ Zeng Quanchao, Li Xin, Dong Yanghong, et al. Ecological stoichiometry of soils in the Yanhe Watershed in the Loess Plateau: The influence of different vegetation zones[J]. Journal of Natural Resources, 2016, 31(11): 1881-1891. ]
[39] 董廷发. 不同海拔云南松林土壤养分及其生态化学计量特征[J]. 生态学杂志, 2021, 40(3): 672-679.
[39] [ Dong Tingfa. Soil nutrients and their ecological stoichiometry of Pinus yunnanensis forest along an elevation gradient[J]. Chinese Journal of Ecology, 2021, 40(3): 672-679. ]
文章导航

/