土壤资源

锡林郭勒草原土壤有机碳分布特征及其影响因素

展开
  • 1. 内蒙古师范大学地理科学学院,内蒙古 呼和浩特 010022
    2. 安徽师范大学地理与旅游学院,安徽 芜湖 241199
常帅(1997-),男,硕士研究生,主要从事生物地理学方面的研究. E-mail: 1904591195@qq.com

收稿日期: 2020-10-25

  修回日期: 2021-02-01

  网络出版日期: 2021-09-24

基金资助

国家自然科学基金(41661009)

Distribution characteristics of soil organic carbon in Xilin Gol steppe and its influencing factors

Expand
  • 1. College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
    2. School of Geography and Tourism, Anhui Normal University, Wuhu 241199, Anhui, China

Received date: 2020-10-25

  Revised date: 2021-02-01

  Online published: 2021-09-24

摘要

土壤有机碳是土壤养分评测和质量分析的重要指标之一,研究不同草原类型土壤有机碳的空间分布规律有利于草地的生态恢复和土地的合理利用。以锡林郭勒草原为研究对象,运用克里格插值法、相关性分析法、一元线性回归法和主成分分析法探讨土壤有机碳的空间分异规律,以期揭示不同影响因素对草原土壤有机碳的影响程度。结果表明:(1) 在草甸草原中,土壤有机碳含量在0~10 cm、20~30 cm、40~50 cm土层的含量依次为23.28 g·kg-1、12.71 g·kg-1、9.28 g·kg-1;在典型草原中,含量变化依次为16.75 g·kg-1、10.75 g·kg-1、7.20 g·kg-1;在荒漠草原中,含量依次为1.62 g·kg-1、2.00 g·kg-1、1.73 g·kg-1。表明草甸和典型草原土壤有机碳含量随土壤深度增加而逐渐降低,而荒漠草原不同土层间无显著性差异。(2) 不同草原类型对土壤有机碳含量的影响程度不同,对于同一土层深度,基本表现为草甸草原>典型草原>荒漠草原。水平方向上有机碳含量与植被盖度分布相一致,呈由东南向西北逐渐递减的趋势。(3) 在对影响因素的分析中,土壤有机碳与海拔、气温、pH均呈极显著负相关关系(P<0.01),与降水、土壤含水量、速效氮、速效磷呈极显著正相关关系(P<0.01),与坡度、坡向、速效钾无明显相关性关系(P>0.05)。(4) 影响土壤有机碳的主要因子为速效氮、降水量和气温,次要因子为土壤含水量和速效钾,因此,应注重对不同草原氮素的摄入以及水热条件的把控。

本文引用格式

常帅,于红博,曹聪明,马梓策,刘月璇,李想 . 锡林郭勒草原土壤有机碳分布特征及其影响因素[J]. 干旱区研究, 2021 , 38(5) : 1355 -1366 . DOI: 10.13866/j.azr.2021.05.17

Abstract

Soil organic carbon (SOC) is an important indicator of soil nutrient content and quality. The study of SOC in different steppe types assists ecological restoration and rational land use projects. This study was conducted in the Xilin Gol steppe, and used the Kriging interpolation, correlation analysis, unary linear regression, and principal component analysis to explore the spatial differentiation of SOC and identify its influencing factors. The results showed that: (1) In the meadow steppe, SOC content in 0-10 cm, 20-30 cm, and 40-50 cm soil layers was 23.28 g·kg-1,12.71 g·kg-1, and 9.28 g·kg-1, respectively; in the typical steppe it was 16.75 g·kg-1, 10.75 g·kg-1, and 7.20 g·kg-1, respectively; in the desert steppe, the content was 1.62 g·kg-1, 2.00 g·kg-1, and 1.73 g·kg-1, respectively. Also, results showed that the SOC content in the meadow and typical steppes gradually decreased with the increase of soil depth, while there was no significant difference between different soil layers in the desert steppe. (2) Different steppe types had different influences on SOC content. For the same soil layer depth, the SOC content order was basically meadow steppe>typical steppe>desert steppe. The SOC content in the horizontal direction was consistent with the distribution of vegetation coverage, showing a trend of gradual decrease from southeast to northwest. (3) Correlation analysis showed that SOC was significantly (P<0.01) and negatively correlated with altitude, temperature, and pH; and significantly (P<0.01) and positively correlated with precipitation, soil water content, available nitrogen, and available phosphorus. It had no significant correlation (P>0.05) with slope, aspect, and available potassium. (4) The main factors affecting SOC were available nitrogen, precipitation, and temperature; the secondary factors were soil water content and available potassium. Therefore, attention should be paid to the control of nitrogen intake and hydrothermal conditions in different steppe types.

参考文献

[1] 郝丽婷, 吴发启. 黄土丘陵沟壑区坝地和梯田土壤养分特征与演变[J]. 水土保持通报, 2019, 39(5): 16-22.
[1] [ Hao Liting, Wu Faqi. Characteristics and evolution of soil nutrients of dam land and terrace in a loess hilly area[J]. Bulletin of Soil and Water Conservation, 2019, 39(5): 16-22. ]
[2] 李理, 朱文博, 刘俊杰, 等. 宝天曼自然保护区土壤有机碳异质性及其影响因素[J]. 长江流域资源与环境, 2020, 29(3): 687-695.
[2] [ Zhu Wenbo, Liu Junjie, et al. Soil organic carbon heterogeneity and its influencing factors in Baotianman nature reserve[J]. Resources and Environment in the Yangtze Basin, 2020, 29(3): 687-695. ]
[3] Batjes N H. Soil carbon stocks and projected changes according to land use and management: A case study for Kenya[J]. Soil Use and Management. 2004, 20(3): 350-356.
[4] Bouma J J W. Doran A J. Jones Methods for assessing soil quality SSSA special publication No.49 1996 soil science society of America London, England[J]. Scientia Horticulturae, 1997, 70(4): 355-356.
[5] 李灵, 张玉, 卢晓燕, 等. 武夷山市茶园土壤有机质的空间分布特征[J]. 长江大学学报: 自然科学版, 2019, 16(11): 60-65, 67.
[5] [ Li Ling, Zhang Yu, Lu Xiaoyan, et al. Spatial distribution of soil organic matter in tea gardens of Wuyishan City[J]. Journal of Yangtze University: Natural Science Edition, 2019, 16(11): 60-65, 67. ]
[6] 谭海燕, 童江云, 包涛, 等. 昆明市滇池片区耕地土壤养分含量空间分布及变化情况分析[J]. 西南农业学报, 2019, 32(7): 1614-1620.
[6] [ Tan Haiyan, Tong Jiangyun, Bao Tao, et al. Analysis on temporal and spatial variation of soil nutrient content in dianchi district of Kunming City[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(7): 1614-1620. ]
[7] 王勇辉, 焦黎. 艾比湖湿地土壤有机碳及储量空间分布特征[J]. 生态学报, 2016, 36(18): 5893-5901.
[7] [ Wang Yonghui, Jiao Li. The characteristics and storage of soil organic carbon in the Ebinur lake wetland[J]. Acta Ecologica Sinica, 2016, 36(18): 5893-5901. ]
[8] 胡莹洁, 孔祥斌, 姚静韬. 北京市平原区土壤有机碳垂直分布特征[J]. 生态学报, 2019, 39(2): 561-570.
[8] [ Hu Yingjie, Kong Xiangbin, Yao Jingtao. Vertical distribution of soil organic carbon in plains areas of Beijing[J]. Acta Ecologica Sinica, 2019, 39(2): 561-570. ]
[9] 马和平, 东主. 西藏色季拉山北坡表层土壤有机碳垂直分布特征研究[J]. 高原农业, 2020, 4(2): 115-122.
[9] [ Ma Heping, Dong Zhu. Vertical distribution characteristics of surface soil organic carbon on the north slope of Sygera Mountains, Tibet[J]. Journal of Plateau Agriculture, 2020, 4(2): 115-122. ]
[10] 曹生奎, 曹广超, 陈克龙, 等. 青海湖高寒湿地土壤有机碳含量变化特征分析[J]. 土壤, 2013, 45(3): 392-398.
[10] [ Cao Shengkui, Cao Guangchao, Chen Kelong, et al. Characteristics of alpine wetland soil organic carbon variations around Qinghai Lake[J]. Soils, 2013, 45(3): 392-398. ]
[11] Liu M Y, Chang Q R, Qi Y B, et al. Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China[J]. Catena, 2014, 115(11): 19-28.
[12] 朱猛, 冯起, 张梦旭, 等. 祁连山中段草地土壤有机碳分布特征及其影响因素[J]. 草地学报, 2018, 26(6): 1322-1329.
[12] [ Zhu Meng, Feng Qi, Zhang Mengxu, et al. Patterns and influencing factors of soil organic carbon in grasslands of the middle Qilian Mountains[J]. Acta Agrestia Sinica, 2018, 26(6): 1322-1329. ]
[13] 张智博, 刘涛, 伍青山, 等. 东平湖湿地土壤有机碳分布特征及其影响因素[J]. 人民黄河, 2019, 41(7): 92-96, 147.
[13] [ Zhang Zhibo, Liu Tao, Wu Qingshan, et al. Distribution characteristics and influencing factors of organic carbon content in soil of Dongping Lake wetland[J]. Yellow River, 2019, 41(7): 92-96, 147. ]
[14] 李兰花, 杨勇, 萨仁格日勒. 内蒙古典型草原土壤有机碳与土壤理化性质的关系[J]. 安徽农学通报, 2015, 21(19): 68-70.
[14] [ Li Lanhua, Yang Yong, Sarengerile. Soil organic contents in relation to soil physic-chemical properties in typical steppe of Inner Mongolia[J]. Anhui Agricultural Science Bulletin, 2015, 21(19): 68-70. ]
[15] 黄先飞, 周运超, 张珍明. 土地利用方式下土壤有机碳特征及影响因素——以后寨河喀斯特小流域为例[J]. 自然资源学报, 2018, 33(6): 1056-1067.
[15] [ Huang Xianfei, Zhou Yunchao, Zhang Zhenming, Characteristics and affecting factors of soil organic carbon under land uses: A case study in Houzhai River basin[J]. Journal of Natural Resources, 2018, 33(6): 1056-1067. ]
[16] 李龙, 周飞, 田杰, 等. 地形因子对半干旱地区土壤有机碳含量的影响[J]. 北方园艺, 2019, 43(16): 104-109.
[16] [ Li Long, Zhou Fei, Tian Jie, et al. Effects of topographic factors on soil organic carbon content in semi-arid regions[J]. Northern Horticulture, 2019, 43(16): 104-109. ]
[17] 丰思捷, 赵艳云, 李元恒, 等. 内蒙古典型草原表层土壤有机碳储量差异及影响因素[J]. 中国草地学报, 2019, 41(2): 116-120.
[17] [ Feng Sijie, Zhao Yanyun, Li Yuanheng, et al. The differences and influencing factors of topsoil organic carbon storage in typical steppe of Inner Mongolia[J]. Chinese Journal of Grassland, 2019, 41(2): 116-120. ]
[18] Motavalli P P, Palm C A, Parton W J, et al. Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies[J]. Soil Biology and Biochemistry, 1995, 27(12): 1589-1599. ]
[19] 商泽安, 宋涵晴, 舒琪, 等. 海南岛甘什岭低地次生雨林土壤有机碳及影响因素[J]. 生态环境学报, 2021, 30(2): 297-304.
[19] [ Shang Ze’an, Song Hanqing, Shu Qi, et al. Soil organic carbon distribution and the influencing factors in the tropical lowland secondary rainforest of ganshiling, Hainan Island[J]. Ecology and Environmental Sciences, 2021, 30(2): 297-304. ]
[20] 曹立国, 刘普幸, 张克新, 等. 锡林郭勒盟草地对气候变化的响应及其空间差异分析[J]. 干旱区研究, 2011, 28(5): 789-794.
[20] [ Cao Liguo, Liu Puxing, Zhang Kexin, et al. Analysis on response of grasslands to climate change and its spatial difference in Xilingol League[J]. Arid Zone Research, 2011, 28(5): 789-794. ]
[21] 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2000: 22-114.
[21] [ Bao Shidan. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000: 22-114. ]
[22] 马梓策, 于红博, 曹聪明, 等. 中国植被覆盖度时空特征及其影响因素分析[J]. 长江流域资源与环境, 2020, 29(6): 1310-1321.
[22] [ Ma Zice, Yu Hongbo, Cao Congming, et al. Spatiotemporal characteristics of fractional vegetation coverage and its influencing factors in China[J]. Resources and Environment in the Yangtze Basin, 2020, 29(6): 1310-1321. ]
[23] 王彦龙, 王晓丽, 马玉寿. 坡向对长江源区高寒草地植被生长和土壤养分特征的影响[J]. 草业科学, 2018, 35(10): 2336-2346.
[23] [ Wang Yanlong, Wang Xiaoli, Ma Yushou. Effect of slope aspect on vegetation growth and soil nutrient characteristics of alpine grassland in the source region of Yangtze River[J]. Pratacultural Science, 2018, 35(10): 2336-2346. ]
[24] 贾豪, 严宁珍, 程永毅, 等. 渝东南农田土壤有机碳空间分布特征及影响因素[J]. 核农学报, 2019, 33(6): 1256-1263.
[24] [ Jia Hao, Yan Ningzhen, Cheng Yongyi, et al. Spatial distribution characteristics and influence factors of soil organic carbon in farmland in southeast Chongqing[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(6): 1256-1263. ]
[25] 郝璐, 吴向东. 内蒙古草地生产力时空变化及驱动因素分析[J]. 干旱区研究, 2006, 23(4): 577-582.
[25] [ Hao Lu, Wu Xiangdong. Analysis on the spatiotemporal change of steppe productivity and its driving factors in Inner Mongolia[J]. Arid Zone Research, 2006, 23(4): 577-582. ]
[26] 曹祥会, 龙怀玉, 周脚根, 等. 河北省表层土壤有机碳和全氮空间变异特征性及影响因子分析[J]. 植物营养与肥料学报, 2016, 22(4): 937-948.
[26] [ Cao Xianghui, Long Huaiyu, Zhou Jiaogen, et al. Analysis of spatial variability and influencing factors of topsoil organic carbon and total nitrogen in Hebei Province[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 937-948. ]
[27] 景建生, 刘子琦, 罗鼎, 等. 喀斯特洼地土壤有机碳分布特征及影响因素[J]. 森林与环境学报, 2020, 40(2): 133-139.
[27] [ Jing Jiansheng, Liu Ziqi, Luo Ding, et al. Distribution characteristics and influencing factors of soil organic carbon in karst depression[J]. Journal of Forest and Environment, 2020, 40(2): 133-139. ]
[28] 张丽君, 麻万诸, 项佳敏, 等. 浙江省耕地土壤速效钾状况及影响因素分析[J]. 浙江农业科学, 2020, 61(4): 607-611.
[28] [ Zhang Lijun, Ma Wanzhu, Xiang Jiamin, et al. Soil available potassium status and its influencing factors in cultivated land of Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(4): 607-611. ]
[29] 何洪盛, 田青, 王理德, 等. 青土湖退耕地植被群落特征与土壤理化性质分析[J]. 干旱区研究, 2021, 38(1): 223-232.
[29] [ He Hongsheng, Tian Qing, Wang Lide, et al. Study on vegetation community characteristics and soil physical and chemical properties of abandoned land in Qingtu Lake[J]. Arid Zone Research, 2021, 38(1): 223-232. ]
[30] 刘梦云, 常庆瑞, 齐雁冰, 等. 黄土台塬不同土地利用土壤有机碳与颗粒有机碳[J]. 自然资源学报, 2010, 25(2): 218-226.
[30] [ Liu Mengyun, Chang Qingrui, Qi Yanbing, et al. Soil organic carbon and particulate organic carbon under different land use types on the Loess Plateau[J]. Journal of Natural Resources, 2010, 25(2): 218-226. ]
[31] 王淑芳, 王效科, 欧阳志云. 密云水库上游流域土壤有机碳特征及其影响因素[J]. 土壤, 2011, 43(4): 515-524.
[31] [ Wang Shufang, Wang Xiaoke, Ouyang Zhiyun. Characteristics and influencing factors of soil organic carbon in upstream watershed of Miyun Reservoir in North China[J]. Soils, 2011, 43(4): 515-524. ]
[32] 王淑平, 周广胜, 吕育财, 等. 中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子的关系[J]. 植物生态学报, 2002, 48(5): 513-517.
[32] [ Wang Shuping, Zhou Guangsheng, Lyu Yucai, et al. Distribution of soil carbon, nitrogen and phosphorus along northeast China transect (NECT) and their relationships with climatic factors[J]. Chinese Journal of Plant Ecology, 2002, 48(5): 513-517. ]
[33] 史飞, 徐梦, 张旭博, 等. 藏东南色季拉山西坡不同植被土壤有机碳垂直分布特征及其影响因素[J]. 植物营养与肥料学报, 2020, 26(5): 942-953.
[33] [ Shi Fei, Xu Meng, Zhang Xubo, et al. Vertical distribution of soil organic carbon and influential factors along vegetation transect on west slope of Mount Segrila, southeastern Tibet[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 942-953. ]
[34] 王園博, 赵锐锋, 张丽华, 等. 黑河中游湿地不同植物群落土壤有机碳分布及影响因素[J]. 草业科学, 2020, 37(5): 833-844.
[34] [ Wang Yuanbo, Zhao Ruifeng, Zhang Lihua, et al. Soil organic carbon and its influencing factors on the different plant communities in the middle reaches of the Heihe River wetland[J]. Pratacultural Science, 2020, 37(5): 833-844. ]
[35] 傅华, 陈亚明, 王彦荣, 等. 阿拉善主要草地类型土壤有机碳特征及其影响因素[J]. 生态学报, 2004, 24(3): 469-476.
[35] [ Fu Hua, Chen Yaming, Wang Yanrong, et al. Organic carbon content in major grassland types in Alex, Inner Mongolia[J]. Acta Ecologica Sinica, 2004, 24(3): 469-476. ]
文章导航

/