土壤资源

民勤绿洲边缘阻沙带表层土壤粒度空间分布特征

展开
  • 1. 甘肃省治沙研究所甘肃省荒漠化与风沙灾害防治国家重点实验室,甘肃 兰州 730070
    2. 甘肃民勤荒漠草地生态系统国家野外科学观测研究站,甘肃 民勤 733000
    3. 古浪县海子滩林场,甘肃 古浪 733100
赵鹏(1987-),博士,副研究员,主要从事荒漠化防治研究. E-mail: zhpg1987@sina.com

收稿日期: 2021-04-02

  修回日期: 2021-07-01

  网络出版日期: 2021-09-24

基金资助

国家地区科学基金项目(41661064);国家地区科学基金项目(41761051);国家地区科学基金项目(41761006);甘肃省科技计划(19ZD2FH001-1);甘肃省科技计划(20JR5RA094);甘肃省科技计划(20JR5RA091);甘肃省财政防沙治沙项目“微型压沙车在河西走廊风沙源治理中的推广应用”

Spatial distribution characteristics of grain size of surface soil in the sand-resitant belt of Minqin Oasis marginal

Expand
  • 1. State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou 730070, Gansu, China
    2. Gansu Minqin National Field Observation & Research Station on Ecosystem of Desert Grassland, Minqin 733000, Gansu, China
    3. Gulang County Haizitan Forest Field, Gulang 733100, Gansu, China

Received date: 2021-04-02

  Revised date: 2021-07-01

  Online published: 2021-09-24

摘要

土壤粒度是风沙活动的重要表征参数。通过野外调查与室内测试,分析了不同空间分布防风固沙林表层土壤粒度的空间分布特征,旨在评价民勤绿洲边缘阻沙带防风固沙功能。结果表明:(1) 坝区梭梭-沙拐枣-沙蒿-沙米固沙林表层土壤粒度组成以细砂、中砂、极细砂为主,分别占33.47%、26.08%、18.18%;泉山区白刺+沙蒿+五星蒿固沙林表层土壤粒度组成以细砂、粉粒和极细砂为主,分别占29.62%、21.17%、18.87%;湖区白刺-芦苇-猪毛菜固沙林表层土壤粒度组成以细砂、粉粒和极细砂为主,分别占36.66%、27.98%、22.83%。(2) 平均粒径:坝区(2.55 Φ)>泉山区(3.5 Φ)>湖区(3.94 Φ),分选性:坝区(1.58 Φ)较差,湖区(2.10 Φ)和泉山区(2.29 Φ)很差。(3) 泉山区、湖区表层土壤粒度频率曲线为双峰型,坝区为单峰型,偏度均为极正偏态,峰度表现为很窄。粒度累计分布曲线反映出坝区风沙活动较泉山区、湖区频繁、强烈。阻沙带荒漠植被群落物种组成决定着其防风固沙功能的大小,进而影响其表层土壤的粒度分布特征。建议阻沙带生态防护体系修复时应注重选择固沙能力强的造林树种。

本文引用格式

赵鹏,朱淑娟,段晓峰,常兆丰,康才周,王方琳,王昱淇,高德才 . 民勤绿洲边缘阻沙带表层土壤粒度空间分布特征[J]. 干旱区研究, 2021 , 38(5) : 1335 -1345 . DOI: 10.13866/j.azr.2021.05.15

Abstract

Soil particle size is an important characteristic parameter of sand drift activity. Through field investigation and indoor test, this paper explored the grain size characteristics of surface soil at the windbreak and sand fixation forest with different spatial distribution, to evaluate the function of the sand barrier belt on the edge of Minqin Oasis. According to the results, the grain size composition in the surface soil of Haloxylon ammodendron-Artemisia desertorum-Agriophyllum squarrosum fixing forest in Baqu was mainly fine sand, medium sand, and very fine sand, which accounts for 33.47%, 26.08%, and 18.18%, respectively. The grain size composition in the surface soil of Nitraria tangutorum-Artemisia desertorum-Bassia dasyphylla fixing forest in Quanshanqu was dominated by fine sand, silt, and very fine sand, which accounts for 29.62%, 21.17%, and 18.87%, respectively. The grain size composition in the surface soil of Nitraria tangutorum-Phragmites australis- Salsola collina fixing forest in Huqu mainly consisted of fine sand, silt, and very fine sand, which accounts for 36.66%, 27.98%, and 22. 83%, respectively. Average particle size, Baqu (2.55 Φ) > Quanshanqu (3.5 Φ) > Huqu (3.94 Φ). Grain size sorting in Baqu (1.58 Φ) was poor, grain size sorting in Quanshanqu (2.29 Φ) and Huqu (2.10 Φ) were also very poor. The frequency curve of grain size in Quanshanqu and Huqu is of double peak type, while that in Baqu is of single peak type. The skewness is extremely positive, and the kurtosis is very narrow. The cumulative distribution curve of grain size shows that the aeolian sand activity in Baqu is more frequent and intense than that in the Quanshanqu and Huqu. The specie composition of the desert vegetation community determines the function of windbreak and sand fixation in the sand-blocking belt and then affects the grain size distribution of the topsoil. It suggested that forestation tree species with strong sand-fixing ability should be selected when the ecological protection system of sand-blocking belt is restored.

参考文献

[1] Hwang S I, Powers S E. Using particle-size distribution models to estimate soil hydraulic properties[J]. Soil Science Society of America Journal, 2003, 67(4): 1103-1112.
[2] 张俊华, 李国栋, 南忠仁, 等黑河绿洲区耕作影响下的土壤粒径分布及其与有机碳的关系[J]. 地理研究, 2012, 31(4): 608-618.
[2] [ Zhang Junhua, Li Guodong, Nan Zhongren, et al. Research on soil particle distribution and its relationship with soil organic carbon under the effects of tillage in the Heihe oasis[J]. Geographcial Research, 2012, 31(4): 608-618. ]
[3] Mohammadi M H, Meskini-Vishkaee F. Predicting soil moisture characteristic curves from continuous particle-size distribution data[J]. Pedosphere, 2013, 23(1): 70-80.
[4] 李海东, 沈渭寿, 邹长新, 等. 雅鲁藏布江山南宽谷风沙化土地土壤养分和粒度特征[J]. 生态学报, 2012, 32(16): 4981-4992.
[4] [ Li Haidong, Shen Weishou, Zou Changxin, et al. Soil nutrients content and grain size fraction of aeolian sandy land in the Shannan wide valley of the Yalung Zangbo River, China[J]. Acta Ecologica Sinica, 2012, 32(16): 4981-4992. ]
[5] 陈影影, 张振克, 徐华夏, 等. 沿海不同年限围垦区土壤剖面有机碳同位素与粒度特征——以江苏省东台市为例[J]. 地理科学, 2015, 35(6): 782-789.
[5] [ Chen Yingying, Zhang Zhenke, Xu Huaxia, et al. Stable carbon isotope and particle size characteristics in coastal saline soil with different reclamation age of Dongtai, Jiangsu Province[J]. Scientia Geographica Sinica, 2015, 35(6): 782-789. ]
[6] 桂东伟, 雷加强, 曾凡江, 等. 塔里木盆地南缘绿洲农田土壤粒径分布分形特征及影响因素研究[J]. 中国生态农业学报, 2010, 18(4): 730-735.
[6] [ Gui Dongwei, Lei Jiangqiang, Zeng Fangjiang, et al. Fractal dimension of partical size distribution and its affecting factors in oasis farmland soils in southern marginal zones of Tarim Basin[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 730-735. ]
[7] 王忠臣, 钱亦兵, 张海燕, 等. 东天山喀尔里克山北坡淖毛湖盆地土壤粒度分布特征及成因[J]. 冰川冻土, 2010, 32(5): 1035-1043.
[7] [ Wang Zhongcheng, Qian Yibing, Zhang Haiyan, et al. Size distribution and origin of the soils on the north slopes of Karlik mountains-Nom basin in the Tianshan mountains[J]. Journal of Glaciology and Geocryology, 2010, 32(5): 1035-1043. ]
[8] 周欣, 左小安, 赵学勇, 等. 科尔沁沙地沙丘固定过程中植物生物量及土壤特性[J]. 中国沙漠, 2015, 35(1): 81-89.
[8] [ Zhou Xin, Zuo Xiao’an, Zhao Xueyong, et al. Plant biomass and soil properties during the process of dune restoration in the Horqin Sandy Land[J]. Journal of Desert Research, 2015, 35(1): 81-89. ]
[9] 田丽慧, 张登山, 彭吉平, 等. 高寒沙地人工植被恢复区地表沉积物粒度特征[J]. 中国沙漠, 2015, 35(1): 32-39.
[9] [ Tian Lihui, Zhang Dengshan, Peng Jiping, et al. Grain size of land surface deposits in a vagetation restoration region of the alpine sandy land in Qinghai, China[J]. Journal of Desert Research, 2015, 35(1):32-39. ]
[10] 贾萌萌, 张忠良, 雷加强, 等. 塔里木沙漠公路防护林地土壤粒径分布的分形特征[J]. 干旱区研究, 2015, 32(4): 674-679.
[10] [ Jia Mengmeng, Zhang Zhongliang, Lei Jiaqiang, et al. Fractal characteristics of soil particle distribution in protection forest of Tarim desert highway[J]. Arid Zone Reaearch, 2015, 32(4): 674-679. ]
[11] 董治宝, 李振山. 风成沙粒度特征对其风蚀可蚀性的影响[J]. 土壤侵蚀与水土保持学报, 1998, 4(4): 3-5.
[11] [ Dong Zhibao, Li Zhenshan. Wind erodibility of aeolian sand as influenced by grain-size parameters[J]. Journal of Soil Erosion and Soil and Water Conservation, 1998, 4(4): 3-5. ]
[12] 刘树林, 王涛, 屈建军. 浑善达克沙地土地沙漠化过程中土壤粒度与养分变化研究[J]. 中国沙漠, 2008, 28(4): 611-616.
[12] [ Liu Shulin, Wang Tao, Qu Jianjun. Soil characteristics changes in desertification process in Hunshandake sandy land, northern China[J]. Journal of Desert Research, 2008, 28(4): 611-616. ]
[13] 杨世荣, 蒙仲举, 党晓宏, 等. 库布齐沙漠生态光伏电站不同覆盖类型下土壤粒度特征[J]. 水土保持研究, 2020, 27(1): 112-118.
[13] [ Yang Shirong, Meng Zhongju, Dang Xiaohong, et al. Grain size characteristics of surface sediments of eco-photovoltaic power station in Kubuqi Desert[J]. Research of Soil and Water Conservation, 2020, 27(1): 112-118. ]
[14] 王艺钊, 原伟杰, 丁国栋, 等. 聚乳酸(PLA)沙障凹曲面及沉积物粒度特征研究[J]. 干旱区地理, 2020, 43(3): 671-678.
[14] [ Wang Yizhao, Yuan Weijie, Ding Guodong, et al. Concave surface and grain-size characteristics in polylactic acid sand barrier[J]. Arid Land Geography, 2020, 43(3): 671-678. ]
[15] 苏松领, 毛东雷, 蔡富艳, 等. 新疆策勒沙漠与砾质戈壁新月形沙丘表面沉积物粒度特征及其沉积环境[J]. 干旱区资源与环境, 2020, 34(8): 124-132.
[15] [ Su Songling, Mao Donglei, Cai Fuyan, et al. Grain-size characteriatics and sedimentary environment of sedients on the surfaces of crescent-shaped dunes in the desert and gravel Gobi in Cele, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2020, 34(8): 124-132. ]
[16] 司月君, 李保生, 李志文, 等. 北部湾海岸现代风沙与海滩沙粒度特征对比[J]. 中国沙漠, 2020, 40(6): 1-10.
[16] [ Si Yuejun, Li Baosheng, Li Zhiwen, et al. A comparative analysis of grain size characteristics of modern aeolian sand and beach sand from the coast od Beibu Gulf in China[J]. Journal of Desert Research, 2020, 40(6): 1-10. ]
[17] 马茜茜, 谢小松, 肖建华, 等. 阿联酋迪拜中部沙漠沉积物粒度特征及其沉积环境分析[J]. 干旱区资源与环境, 2020, 34 (11):104-109.
[17] [ Ma Qianqian, Xie Xiaosong, Xiao Jianhua, et al. Analysis of grain-size characteristics and sedimentary environment of sediments in central Dubai, United Arab Emirates[J]. Journal of Arid Land Resources and Environment, 2020, 34 (11): 104-109. ]
[18] 李志星, 李志忠, 靳建辉, 等. 河北昌黎海岸沙丘粒度参数特征的风沙环境意义[J]. 海南师范大学学报(自然科学版), 2020, 33(1): 92-102.
[18] [ Li Zhixing, Li Zhizhong, Jin Jianhui, et al. The significance of aeolian environment reflectsd by particle size paramaters of coastal dunes in Changli, Hebei province[J]. Journal of Hainan Normal University(Nature Science Edition), 2020, 33(1): 92-102. ]
[19] 周丹丹, 董建林, 高永, 等. 巴音温都尔沙漠表层土壤粒度特征及风蚀量估算[J]. 干旱区地理, 2008, 31(6): 933-939.
[19] [ Zhoug Dandan, Dong Jianlin, Gao Yong, et al. Grain size analysis and soil loss of surface soil during desertification process on Bayinwenduer desert[J]. Arid Land Geography, 2008, 31(6): 933-939. ]
[20] 闫玉春, 唐海萍, 张新时, 等. 基于土壤粒度分析的草原风蚀特征探讨[J]. 中国沙漠, 2010, 30(6): 1263-1268.
[20] [ Yan Yuchun, Tang Haiping, Zhang Xinshi, et al. A probe into grassland wind erosion based on the analysis of soil particle size[J]. Journal of Desert Research, 2010, 30(6): 1263-1268. ]
[21] 张正偲, 董治宝. 土壤风蚀对表层土壤粒度特征的影响[J]. 干旱区资源与环境, 2012, 26(12): 86-89.
[21] [ Zhang Zhengcai, Dong Zhibao. The effect of wind erosion on the surface particle size[J]. Journal of Arid Land Resources and Environment, 2012, 26(12): 86-89. ]
[22] 鹿化煜, 安芷生. 黄土高原红粘土与黄土古土壤粒度特征对比——红粘土风成成因的新证据[J]. 沉积学报, 1999, 17(2): 61-67.
[22] [ Lu Huayu, An Zhisheng. Comparison of grain-size distribu-tion of red clay and loess-paleosol deposits in Chinese Loess Plateau[J]. Acta Sedimentologica Sinica, 1999, 17(2): 61-67. ]
[23] 乔彦松, 郭正堂, 郝青振, 等. 中新世黄土-古土壤序列的粒度特征及其对成因的指示意义[J]. 中国科学D辑: 地球科学, 2006, 36(7): 646-653.
[23] [ Qiao Yansong, Guo Zhengtang, Hao Qingzhen, et al. Grain-size characteristics of the Miocene loess-palaeosol sequence and their implications for genesis[J]. Scientia Sinica (Terrae), 2006, 36(7): 646-653. ]
[24] 杨用钊, 李福春, 曹志洪, 等. 昆山绰墩古土壤粒度特征及母质判别[J]. 土壤通报, 2007, 44(1): 1-5.
[24] [ Yang Yongzhao, Li Fuchun, Cao Zhihong, et al. Particle-size features of Chunodun Paleosol and identification of its parent material[J]. Chinese Journal of Soil Science, 2007, 44(1): 1-5. ]
[25] 刘虎俊, 王继和, 常兆丰. 石羊河下游荒漠植物区系及其植被特征[J]. 生态学杂志, 2006, 25(2): 113-118.
[25] [ Liu Hujun, Wang Jihe, Chang Zhaofeng, et al. Characteristics of desert flora and vegetation in lower reach of Shiyang River basin[J]. Chinese Journal of Ecology, 2006, 25(2): 113-118. ]
[26] 李小玉, 宋冬梅, 肖笃宁. 石羊河下游民勤绿洲地下水矿化度的时空变异[J]. 地理学报, 2005, 60(2): 319-327.
[26] [ Li Xiaoyu, Song Dongmei, Xiao Duning. The variability of groundwater mineralization in Minqin Oasis[J]. Acta Geographica Sinica, 2005, 60(2): 319-327. ]
[27] Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1) :3-26.
[28] Sahu B. Depositional mechanisms from the size analysis of clastic sediments[J]. Journal of Sedimentary Research, 1964, 34(1) :73-83.
[29] 李森, 夏训诚, 肖洪浪, 等. 马里萨赫勒地区风成沙特征、来源与发育时代[J]. 地理科学, 1999, 19(2): 68-75.
[29] [ Li Sen, Xia Xuncheng, Xiao Honglang, et al. Characteristics, origin and development era of eolian sand in Sahelian region, Mali[J]. Scientia Geographica Sinica, 1999, 19(2): 68-75. ]
[30] 王立强. 河西走廊及其毗邻地区地表沉积与亚洲粉尘源区示踪[D]. 兰州: 兰州大学, 2011.
[30] [ Wang Liqiang. Surface Deposits of the Hexi Corridor and Its Adjacent Areas and Implications for Provenance of Asian Dust[D]. Lanzhou: Lanzhou University, 2011. ]
[31] 安庆, 安萍, 徐汝汝, 等. 青藏高原不同地区沉积物的粒度特征与沉积环境判别公式适用性对比研究[J]. 聊城大学学报(自然科学版), 2017, 30(4): 37-47.
[31] [ An Qing, An Ping, Xu Ruru, et al. Comparative study on grain size characteristics of sediments in different regions of the Tibetan Plateau and the applicability of sedimentary environment discriminant formulas[J]. Journal of Liaocheng University(Naturnal Science Edition), 2017, 30(4): 37-47. ]
[32] 董治宝, 陈渭南, 董光荣, 等. 植被对风沙土风蚀作用的影响[J]. 环境科学学报, 1996, 16(4): 437-443.
[32] [ Dong Zhibao, Chen Weinan, Dong Guangrong, et al. Influences of vegetation cover on the wind erosion of sandy soil[J]. Acta Scientiae Circumstantiae, 1996, 16(4): 437-443. ]
[33] 钱亦兵, 周华荣, 张立运, 等. 塔里木河中下游湿地及其周边土壤粒度的空间分布[J]. 干旱区地理, 2005, 28(5): 609-613.
[33] [ Qian Yibing, Zhou Huarong, Zhang Liyun, et al. Spatial distribution of soil granularity in the wetlands and their peripheral regions in the middle and lower reaches of the Tarim River[J]. Arid Land Geography, 2005, 28(5): 609-613. ]
[34] 高广磊, 丁国栋, 赵媛媛, 等. 生物结皮发育对毛乌素沙地土壤粒度特征的影响[J]. 农业机械学报, 2014, 45(1): 115-120.
[34] [ Gao Guanglei, Ding Guodong, Zhao Yuanyuan, et al. Effects of biological soil crusts on soil particle size characteristics in Mu Us sandland[J]. Transcation of the Chinese Society for Agricultural Machinery, 2014, 45(1): 115-120. ]
[35] 高君亮, 高永, 罗凤敏, 等. 表土粒度特征对风蚀荒漠化的响应[J]. 科技导报, 2014(25): 20-25.
[35] [ Gao Junliang, Gao Yong, Luo Fengmin, et al. Response of surface soil grain size characteristics to wind erosion desertification[J]. Scinece & Technology Review, 2014(25): 20-25. ]
[36] 常兆丰, 李易珺, 张剑挥, 等. 民勤荒漠区4种植物的防风固沙功能对比分析[J]. 草业科学, 2012, 29(3): 358-363.
[36] [ Chang Zhaofeng, Li Yijun, Zhang Jianhui, et al. Comparison on functions of wind break and sand fixation four plant species in Minqin desert[J]. Pratacultural Science, 2012, 29(3): 358-363. ]
[37] 王利兵, 胡小龙, 余伟莅, 等. 沙粒粒径组成的空间异质性及其与灌丛大小和土壤风蚀相关性分析[J]. 干旱区地理, 2006, 29(5): 688-693.
[37] [ Wang Libing, Hu Xiaolong, Yu Weili, et al. Spatial heterogeneity of granule diameter and its relation with shrunb size and soil erosion[J]. Arid Land Geography, 2006, 29(5): 688-693. ]
[38] 王彦武, 罗玲, 张峰, 等. 民勤县绿洲边缘固沙林防风蚀效应研究[J]. 西北林学院学报, 2018, 33(4): 64-70.
[38] [ Wang Yanwu, Luo Ling, Zhang Feng, et al. Windbreak effect of sand-fixation forest on the edge of oasis in Minqin[J]. Journal of northwest Forestry University, 2018, 33(4): 64-70. ]
[39] 王萍, 王燕. 民勤荒漠-绿洲过渡带不同下垫面条件的土壤风蚀特征[J]. 农业工程学报, 2012, 28(11): 138-145.
[39] [ Wang Ping, Wang Yan. Characteristics of aeolian sediment under different underlying surfaces in oasis-desert transitional region of Minqin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(11): 138-145. ]
[40] 赵明, 詹科杰, 杨自辉, 等. 民勤沙漠-绿洲低空沙尘暴结构特征研究[J]. 中国科学D辑: 地球科学, 2011, 41(2): 234-242.
[40] [ Zhao Ming, Zhan Kejie, Yang Zihui, et al. Study on the structure characteristics of low altitude sandstorm in Minqin desert-oasis[J]. Scientia Sinica (Terrae), 2011, 41(2): 234-242. ]
[41] 李耀辉, 沈洁, 赵建华, 等. 地形对民勤沙尘暴发生发展影响的模拟研究——以一次特强沙尘暴为例[J]. 中国沙漠, 2014, 34(3): 849-860.
[41] [ Li Yaohui, Shen Jie, Zhao Jianhua, et al. Simulation of terrain effect to the development of sandstrom in Minqin: Take a heavy sandstrom for example[J]. Journal of Desert Research, 2014, 34(3): 849-860. ]
[42] 李育, 王岳, 张成琦, 等. 干旱区内陆河流域中游地区全新世沉积相变与环境变化——以石羊河流域为例[J]. 地理研究, 2014, 33(10): 1866-1880.
[42] [ Li Yu, Wang Yue, Zhang Chengqi, et al. Changes of sedimentary facies and holocene environments in the middle reaches of inland rivers, arid China: A case study of the Shiyanghe River[J]. Geographical Research, 2014, 33(10): 1866-1880. ]
[43] 张娅璐, 春喜, 周海军, 等. 沙漠沙地风沙与湖相沉积物粒度判别方法及环境指示意义[J]. 中国沙漠, 2020, 40(5): 1-9.
[43] [ Zhang Yalu, Chun Xi, Zhou Haijun, et al. Grain size discriminant method for eolian and lacustrine sediments of deserts and its environment indication[J]. Journal of Desert Research, 2020, 40(5): 1-9. ]
[44] 赵明珠, 俎瑞平, 王军战, 等. 哈罗铁路沿线沉积物粒度特征[J]. 中国沙漠, 2021, 41(1): 1-9.
[44] [ Zhao Mingzhu, Zu Ruiping, Wang Junzhan, et al. Grain size characteristics of sediment along the Hami-Lop railway[J]. Journal of Desert Research, 2021, 41(1): 1-9. ]
[45] 杨兴华, 康永德, 周成龙, 等. 塔克拉玛干沙漠土壤粒度分布特征及其对粉尘释放的影响[J]. 农业工程学报, 2020, 36(5): 167-174.
[45] [ Yang Xinghua, Kang Yongde, Zhou Chenglong, et al. Characteristics of soil particle size distribution and its effect on dust emission in Taklimakan Desert[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 167-174. ]
文章导航

/