1961—2018年新疆区域高温变化与环流和海温关系
收稿日期: 2020-11-23
修回日期: 2021-06-06
网络出版日期: 2021-09-24
基金资助
自治区自然科学基金(2021D01B83);中国气象局气候变化专项(CCSF202015)
Heatwave changes and the potential causes in Xinjiang from 1961 to 2018
Received date: 2020-11-23
Revised date: 2021-06-06
Online published: 2021-09-24
利用1961—2018年4—9月新疆气象台站实测日最高气温资料、NCEP再分析资料以及大西洋海温资料,对新疆区域高温(≥35 ℃)的日数、初终日、强度等变化特征及与高空环流、大西洋海温关系进行了分析。结果表明:在气候“增暖增湿”背景下新疆高温日数显著增多。在这一情势下,高温的极端性在增多、增强,表现在极高温(Tmax≥40 ℃)发生的日数占比显著增多,一般高温(37 ℃>Tmax≥35 ℃)发生的日数占比呈下降趋势;极高温站数增多,北扩至北疆偏北的阿勒泰地区。全疆高温日初日呈提前、高温日终日呈推后态势,高温日在春季、初秋增多成为高温变化的显著特征。新疆高温日数的增多趋势与高空异常环流密切相关,当赤道大西洋海表温度偏高将有利于南亚高压控制巴尔喀什湖至蒙古国区域,使得新疆区域高温日数偏多。
张太西,樊静,李元鹏,余行杰 . 1961—2018年新疆区域高温变化与环流和海温关系[J]. 干旱区研究, 2021 , 38(5) : 1274 -1284 . DOI: 10.13866/j.azr.2021.05.09
Given the background of global warming, heatwave changes have attracted considerable attention: High temperature events not only cause severe drought, which greatly harms ecological vegetation and agricultural production, but also have a substantial effect on the production activities of water conservancy, industrial and mining enterprises, and human health: Xinjiang is one of the areas in China with a high incidence of extreme high temperature, and there have been frequent extreme high temperature events in this area in recent years: These events in Xinjiang have the characteristics of a wide range of influence, long duration, high outbreak intensity, and an early start and a late finish: The daily maximum temperature data are used to ascertain the heatwave changes in Xinjiang based on the quality-controlled station data from April to September of 1961 to 2018: Moreover, the NCEP reanalysis data and the sea surface temperature observations are employed to understand the potential reasons for heatwave changes: We have taken the temperature from 1981 to 2010 as the climatic mean: Our findings reveal that there was a significant increase in the number of heatwave days in Xinjiang under the local warming and wetting climate: This increase was more pronounced for extreme heatwaves (Tmax ≥ 40 °C), whereas we found a decreasing trend for the occurrence of moderate heatwaves (37 °C > Tmax ≥ 35 °C): We found that the first heatwave is beginning earlier than previously (mid-April at the earliest), and the last heatwave is finishing later than before (late September at the latest): The increase of heatwave is most pronounced in April; however, it makes a limited contribution to the total heatwave change: In North Xinjiang, the abrupt transition occurs earlier than does that in South Xinjiang: We further show that there is a strong correlation between circulation changes and the heatwave days in Xinjiang: When the 200 hPa geopotential height over Balkhash Lake and its surrounding areas is higher (lower) than normal, the number of heatwave days in Xinjiang is larger (smaller): The variation of 200 hPa geopotential height over Balkhash Lake and its surrounding areas can be traced back to anomalies in the sea surface temperature (SST) in the equatorial Atlantic: The South Asian High would control a larger area, from Balkhash Lake to Mongolia, when the equatorial Atlantic SST is higher, which could result in more heatwave days in Xinjiang: As the reasons for the delay of the initial high temperature of some stations with reduced high temperature days in Xinjiang and the mechanism of influence of SST on high temperature events in Xinjiang remain unclear, the above problems require further study.
[1] | 中国气象局气候变化中心. 中国气候变化蓝皮书(2019)[M]. 北京: 科学出版社, 2019: 4-5. |
[1] | [China Meteorological Administration Climate Change Centre. Blue Book on Climate Change in China 2019[M]. Beijing: Science Press, 2019: 4-5. ] |
[2] | IPCC. Climate Change 2013: The Physical Science Basis by IPCC WG I[M]. Cambridge: Cambridge University Press, 2013: 2-3. |
[3] | 方茸, 杨修群. 中国夏季高温与北极海冰的联系特征[J]. 气象, 2009, 35(3): 81-86. |
[3] | [ Fang Rong, Yang Xiuqun. Sunmmer maximum air temperature variability in China and its association with the Arctic Sea Ice concentration[J]. Meteorological Monthly, 2009, 35(3): 81-86. ] |
[4] | 聂羽, 韩振宇, 韩荣青, 等. 中国夏季热浪持续天数的年际变化及环流异常分析[J]. 气象, 2018, 44(2): 294-303. |
[4] | [ Nie Yu, Han Zhenyu, Han Rongqing, et al. Interannual variation of heat wave frequency persistence over China and the associated atmospheric circulation anomaly[J]. Meteorological Monthly, 2018, 44(2): 294-303. ] |
[5] | 王国复, 叶殿秀, 张颖娴, 等. 2017年我国区域性高温过程特征及异常大气环流成因分析[J]. 气候变化研究进展, 2018, 14(4): 341-349. |
[5] | [ Wang Guofu, Ye Dianxiu, Zhang Yingxian, et al. Characteristics and abnormal atmospheric circulation of regional high temperature process in 2017 over China[J]. Climate Change Research, 2018, 14(4): 341-349. ] |
[6] | Ding T, Gao H, Li W Jing. Extreme high-temperature event in southern China in 2016 and the possible role of cross-equatorial flows[J]. International Journal of Climatology, 2018, 38(9): 3579-3594. https://doi.10.1002/joc.5518. |
[7] | 高荣, 王凌, 高歌. 1956-2006年中国高温日数的变化趋势[J]. 气候变化研究进展, 2008, 4(3): 177-181. |
[7] | [ Gao Rong, Wang Ling, Gao Ge. The trend of variation in high temperature days during 1956-2006 in China[J]. Climate Change Research, 2008, 4(3): 177-181. ] |
[8] | 张芳华, 陶亦为, 高辉, 等. 2018年春末南方极端持续高温及MJO影响[J]. 大气科学学报, 2019, 42(1): 100-108. |
[8] | [ Zhang Fanghua, Tao Yiwei, Gao Hui, et al. Persistent extreme high temperature event in southern China in late spring of 2018 and the effect of Madden-Julian Oscillation[J]. Transactions of Atmospheric Sciences, 2019, 42(1): 100-108. ] |
[9] | 王鹏祥, 杨金虎. 中国西北近45 a来极端高温事件及其对区域性增暖的响应[J]. 中国沙漠, 2007, 27(4): 649-655. |
[9] | [ Wang Pengxiang, Yang Jinhu. Extreme high temperature events and response to regional warming in recent 45 years in Northwest China[J]. Journal of Desert Research, 2007, 27(4): 649-655. ] |
[10] | 陈颖, 张灵, 千怀遂. 华南地区近53 a极端高温日数的变化特征及其区域差异[J]. 热带地理, 2016, 36(4): 692-699, 726. |
[10] | [ Chen Ying, Zhang Ling, Qian Huaisui. Variation characteristics and spatial diferences of extremely high temperature days over South China during the recent 53 years[J]. Tropical Geography, 2016, 36(4): 692-699, 726. ] |
[11] | 毛炜峄, 陈鹏翔, 沈永平, 等. 气候变暖背景下2015年夏季新疆极端高温过程及其影响[J]. 冰川冻土, 2016, 38(2): 291-304. |
[11] | [ Mao Weiyi. Chen Pengxiang, Shen Yongping, et al. Characteristics and effects of the extreme maximum air temperature in the summer of 2015 in Xinjiang under global warming[J]. Journal of Glaciology and Geocryology, 2016, 38(2): 291-304. ] |
[12] | 张俊兰, 罗继, 王荣梅. 近20 a新疆升温融雪(冰)型洪水频次时空变化及大气环流型分析[J]. 干旱区研究, 2021, 38(2): 339-350. |
[12] | [ Zhang Junlan, Luo Ji, Wang Rongmei. Combined analysis of the spatiotemporal variations in snowmelt(ice) flood frequency in Xinjiang over 20 years and atmospheric circulation patterns[J]. Arid Zone Research, 2021, 38(2): 339-350. ] |
[13] | 张连成, 张太西, 毛炜峄, 等. 新疆区域高空气温变化特征分析[J]. 干旱区研究, 2021, 38(1): 133-143. |
[13] | [ Zhang Liancheng, Zhang Taixi, Mao Weiyi, et al. Analysis of the upper-air temperature change in Xinjiang region[J]. Arid Zone Research, 2021, 38(1): 133-143. ] |
[14] | 辛渝, 陈洪武, 李元鹏, 等. 新疆北部高温日数的时空变化特征及多尺度突变分析[J]. 干旱区研究, 2008, 25(3): 438-446. |
[14] | [ Xin Yu, Chen Hongwu, Li Yuanpeng, et al. Analysis on the spatio temporal change and multi-scale abrupt change of high temperature days in North Xinjiang[J]. Arid Zone Research, 2008, 25(3): 438-446. ] |
[15] | 苗运玲, 卓世新, 李如琦, 等. 新疆哈密高温气候特征及其环流形势分型[J]. 沙漠与绿洲气象, 2015, 9(2): 38-43. |
[15] | [ Miao Yunling, Zhuo Shixin, Li Ruqi, et al. The high temperature climate characteristics and its circulation situation analysis in Hami[J]. Desert and Oasis Meteorology, 2015, 9(2): 38-43. ] |
[16] | 宋良娈, 宋水华, 苗运玲. 新疆鄯善县近55年高温天气气候特征分析[J]. 气候变化研究快报, 2017, 6(4): 253-259. |
[16] | [ Song Liangluan, Song Shuihua, Miao Yunling. The high temperature climate characteristics of Xinjiang Shanshan in the past 55 years[J]. Climate Change Research Letters, 2017, 6(4): 253-259. ] |
[17] | 樊静, 刘精, 段均泽, 等. 新疆气候公报及影响评价(2017)[R]. 乌鲁木齐: 新疆气候中心, 2017. |
[17] | [ Fan Jing, Liu Jing, Duan Junze, et al. Climate Bulletin and Impact Assessment of Xinjiang(2017)[R]. Urumqi: Xinjiang Climate Centre, 2017. ] |
[18] | Gao M, Yang J, Gong D, et al. Footprints of Atlantic multidecadal oscillation in the low-frequency variation of extreme high temperature in the Northern Hemisphere[J]. Journal of Climate, 2019, 32(3): 791-802. https://doi.org/10.1175/JCLI-D-18-0446.1. |
[19] | Ding Ting, Gao Hui, et al. Impact of the North Atlantic sea surface temperature on the summer high temperature in Northern China[J]. International Journal of Climatology, 2020, 40(4): 2296-2309. |
[20] | 钱永甫, 张琼, 张学洪. 南亚高压与我国盛夏气候异常[J]. 南京大学学报(自然科学版), 2002, 38(3): 99-110. |
[20] | [ Qian Yongfu, Zhang Qiong, Zhang Xuehong. The South Asian high and its effects on China’s mid-summer climate abnormality[J]. Journal of Nanjing University(Natural Science Edition), 2002, 38(3): 99-110. ] |
[21] | 杨辉, 李崇银. 热带太平洋—印度洋海温异常综合模对南亚高压的影响[J]. 大气科学, 2005, 29(1): 99-110: |
[21] | [ Yang Hui, Li Chongyin. Effect of the tropical Pacific-Indian Ocean temperature anomaly mode on the South Asia high[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(1): 99-110. ] |
[22] | 雷杨娜, 龚道溢, 张自银, 等. 中国夏季高温日数时空变化及其环流背景[J]. 地理研究, 2009, 28(3): 653-662. |
[22] | [ Lei Yangna, Gong Daoyi, Zhang Ziyin, et al. Spatial-temporal characteristics of high-temperature events in summer in eastern China and the asso-ciated atmospheric circulation[J]. Geographical Research, 2009, 28 (3): 653-662. ] |
[23] | 陈磊, 王式功, 尚可政. 中国西北地区大范围极端高温事件的大气环流异常特征[J]. 中国沙漠, 2011, 31(4): 1052-1058. |
[23] | [ Chen Lei, Wang Shigong, Shang Kezheng. Atmospheric circulation anomalies of large-scale extreme high temperature events in Northwest China[J]. Journal of Desert Research, 2011, 31(4): 1052-1058. ] |
[24] | 陈颖, 邵伟玲, 曹萌, 等. 新疆夏季高温日数的变化特征及其影响因子[J]. 干旱区研究, 2020, 37(1): 58-66. |
[24] | [ Chen Ying, Shao Weiling, Cao Meng, et al. Variation of summer high temperature days and its affecting factors in Xinjiang[J]. Arid Zone Research, 2020, 37(1): 58-66. ] |
[25] | 符淙斌, 王强. 气候突变的定义和检测方法[J]. 大气科学, 1992, 16(4): 482-493. |
[25] | [ Fu Congbin, Wang Qiang. The definition and detection of the abrupt climatic change[J]. Scientia Atmospherica Sinica, 1992, 16(4): 482-493. ] |
[26] | 魏凤英. 现代气候统计诊断与预测技术[M]. 第二版. 北京: 气象出版社, 2007. |
[26] | [ Wei Fengying. Statistical Diagonsis and Prediction Technology of Modern Climate[M]. 2nd Ed. Beijing: China Meteorological Press, 2007. ] |
/
〈 | 〉 |