喀什河流域降水同位素特征及水汽来源分析
收稿日期: 2020-07-06
修回日期: 2021-05-08
网络出版日期: 2021-09-24
基金资助
国家自然科学基金项目(41761004)
Isotopic characteristics and water vapor sources of precipitation in the Kashi River Basin
Received date: 2020-07-06
Revised date: 2021-05-08
Online published: 2021-09-24
利用喀什河流域山区2017-07—2018-06大气降水同位素数据,以及流域山区温度、降水气象资料,分析了降水中δ18O、δD和氘盈余(d-excess)变化特征,讨论了δ18O与气温、降水量的关系,通过利用HYSPLI模型追踪分析流域山区大气降水的水汽来源。结果表明:(1) 流域内降水中δ18O季节变化明显,夏季δ18O同位素富集,冬季δ18O同位素贫化。(2) 不同降水类型中δ18O、δD的关系差异明显,夏季δD蒸发分馏大于δ18O、降雨大气降水线斜率及截距较小;冬季δD蒸发分馏明显减弱,降雪大气降水线斜率及截距较大。(3) 流域内大气降水同位素存在明显的温度效应,但是降水量效应不显著。(4) 流域内大气降水水汽主要来源于大西洋,受水汽远距离输送,途中加入较多二次蒸发水汽的影响,氘盈余值(d-excess)整体上偏大,但是2月氘盈余偏低,与受北极气团源地温度低、空气湿度大、水汽输送路径短影响有关。(5) 该流域夏季降水主要来源于西风环流和局地再循环水汽,冬季则受西风环流和北极气团共同影响,大西洋水汽形成的降水占研究区总降水量的68.6%,局地再循环水汽占17.1%,北冰洋水汽形成的降水占研究区总降水量的14.3%。
曾康康,杨余辉,胡义成,冯先成 . 喀什河流域降水同位素特征及水汽来源分析[J]. 干旱区研究, 2021 , 38(5) : 1263 -1273 . DOI: 10.13866/j.azr.2021.05.08
Using the precipitation isotopic data from July 2017 to June 2018 in the mountainous area of the Kashi River Basin, in addition to the meteorological data of and precipitation in this mountainous area, we have analyzed and discussed the seasonal variation characteristics of δ18O, δD, and d-excess in precipitation, along with the relationship between δ18O and temperature and precipitation. We used a hysplit model to trace and analyze the water vapor source of atmospheric precipitation in this mountainous area. Our findings reveal that: (1) The hydrogen and oxygen isotopes in the precipitation of the Kashi River Basin fluctuate over a wide range, with obvious seasonal variation; i. e., enrichment in summer and depletion in winter. This is due to high temperatures and a strong evaporation fractionation in summer and low temperatures and a weak evaporation fractionation in winter; (2) The intercept and slope of the local meteoric water line equation in the study area are higher than are those of the global meteoric water line, indicating that the local recycled water vapor has a strong effect on high-altitude rivers. The relationship between δ18O and δD in different precipitation types is obviously different. In summer, the evaporation fractionation of δD is greater than is that of δ18O, and both the slope and the intercept of the local meteoric water line are smaller. In winter, the evaporation fractionation of δD is obviously weakened, and the slope and intercept of the snowfall local meteoric water line are both larger; (3) There is an obvious temperature effect on the isotopes of precipitation in the Kashi River Basin. In summer, the temperature is high and the isotope are enriched. The annual precipitation effect is not significant, but there is a certain precipitation effect in autumn; (4) On the annual scale, there is a relatively large surplus of deuterium, indicating that it is affected greatly by the water vapor from the Atlantic Ocean and the local recycling water vapor. In seasonal terms, the precipitation comes from the Atlantic Ocean in summer and autumn, and the deuterium surplus is high, whereas the precipitation comes from the Arctic Ocean in winter and spring, and the deuterium surplus is low; (5) In summer and autumn the precipitation comes mainly from westerly circulation and local recycled water vapor. The precipitation formed by Atlantic water vapor accounts for 68.6% of the total annual precipitation, whereas the precipitation formed by local recycled water vapor accounts for 17.1%. In winter, the precipitation is affected by westerly circulation and the Arctic air mass, and the precipitation formed by Arctic water vapor accounts for 14.3% of the total annual precipitation.
Key words: Kashi River Basin; precipitation; stable isotope; source of water vapor
[1] | 贺强, 孙从建, 吴丽娜, 等. 基于GNIP的黄土高原区大气降水同位素特征研究[J]. 水文, 2018, 38(1): 58-66. |
[1] | [ He Qiang, Sun Congjian, Wu Lina, et al. Isotopic characteristics of atmospheric precipitation over the Loess Plateau based on GNIP[J]. Journal of China Hydrology, 2018, 38(1): 58-66. ] |
[2] | Tang Yu, Song Xianfang, Zhang Yinhua, et al. Using stable isotopes to understand seasonal and interannual dynamics in moisture sources and atmospheric circulation in precipitation[J]. Hydrological Processes, 2017, 31: 4682-4692. |
[3] | Jia Wenxiong, Xu Xiuting, Yuan Ruifeng F, et al. Variation characteristics of stable isotopes in precipitation and the environmental factors that influence them in the Shiyang River Basin of China[J]. Environmental Earth Sciences, 2019, 78: 306. |
[4] | Pang Zhonghe, Kong Yanglong, Froehlich K, et al. Processes affecting isotopes in precipitation of an arid region[J]. Tells B, 2011, 63: 352-359. |
[5] | Tian Lide, Yao Tandong, MacClune K, et al. Stable isotopic variations in west China: A consideration of moisture sources[J]. Journal of Geophysical Research: Atmospheres, 2007, 112 (D10) 10112. |
[6] | Craig H. Isotopic variations in meteoric water[J]. Science, 1961, 133: 1702-1703. |
[7] | Dansgaard W. Stable isotopes in precipition[J]. Tellus, 1964, 16(4): 436-468. |
[8] | 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 34(13): 801-806. |
[8] | [ Zheng Shuhui, Hou Fagao, Ni Baoling. Hydrogen and oxygen isotopes of precipitation in China[J]. Chinese Science Bulletin, 1983, 34(13): 801-806. ] |
[9] | 章新平, 姚檀栋. 我国降水中δ18O的分布特点[J]. 地理学报, 1998, 53(4): 356-364. |
[9] | [ Zhang Xinping, Yao Tiandong. Distribution features of δ18O in precipitation in China[J]. Acta Geographica Sinica, 1998, 53(4): 356-364. ] |
[10] | 章新平, 刘晶淼, 田立德, 等. 亚洲降水中δ18O沿不同水汽输送路径的变化[J]. 地理学报, 2004, 59(5): 699-708. |
[10] | [ Zhang Xinping, Liu Jingmiao, Tian Lide, et al. Variation of δ18O in precipitation along vapor transport paths over Asian[J]. Acta Geographica Sinica, 2004, 59(5): 699-708. ] |
[11] | Yang Xiaoxin, Xu Baiqin, Yang Wei, et al. Study of altitudinal lapse rates of δ18O in precipitation/river water with seasons on the southeast Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54: 2742-2750. |
[12] | 朱建佳, 陈辉, 巩国丽. 柴达木盆地东部降水氢氧同位素特征与水汽来源[J]. 环境科学, 2015, 36(8): 60-66. |
[12] | [ Zhu Jianjia, Chen Hui, Gong Guoli, et al. Hydrogen and oxygen compositions of precipitation and its water vapor sources in eastern Qaidam basin[J]. Journal of Natural Resources, 2015, 36(8): 60-66. ] |
[13] | 王仕琴, 宋献方, 肖国强, 等. 基于氢氧同位素的华北平原降水入渗过程[J]. 水科学进展 2009, 20(4): 495-501. |
[13] | [ Wang Shiqin, Song Xianfang, Xiao Guoqiang, et al. Appliance of oxygen and hydrogen and oxygen isotopes in the process of precipitation infiltration in the shallow groundwater areas of north China plain[J]. Advances in Water Science, 2009, 20(4): 495-501. ] |
[14] | 张贵玲, 角媛梅, 何礼平, 等. 中国西南地区降水氢氧同位素研究进展与展望[J]. 冰川冻土, 2015, 37(4): 1094-1103. |
[14] | [ Zhang Guiling, Jiao Yuanmei, He Liping, et al. Hydrogen and oxygen isotopes in precipitation in Southwest China: Progress and prospects[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 1094-1103. ] |
[15] | 黄一民, 章新平, 唐方雨, 等. 长沙大气降水中稳定同位素变化及过量氘指示水汽来源[J]. 自然资源学报, 2013, 28(11): 1945-1954. |
[15] | [ Huang Yiming, Zhang Xinping, Tang Fangyu, et al. Variation of stable isotopes in precipitation and excess deuterium indicating water vapor source in Changsha[J]. Journal of Natural Resource 2013, 28(11): 1945-1954. ] |
[16] | 刘小康, 饶志国, 张肖剑, 等. 天山地区大气降水氧同位素的影响因素及其对西风环流的指示意义[J]. 地理学报, 2015, 70(1): 97-109. |
[16] | [ Liu Xiaokang, Rao Zhiguo, Zhang Xiaojian, et al. The influencing factors of oxygen isotopes in atmospheric precipitation in tianshan area and their indicative significance to westerly circulation[J]. Acta Geographica Sinica, 2015, 70(1): 97-109. ] |
[17] | Wang Shenjie, Zhang Mingjun, Chen Felin, et al. Comparison of GCM-simulated isotopic compositions of precipitation in arid Central Asia[J]. Journal of Geographical Science, 2015, 25(7): 771-783. |
[18] | Kong Yanglong, Pang Zhonghe, Klaus froehlich. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess[J]. Tellus B, 2013, 65: 19251. |
[19] | 蒋新华, 苏晨, 程中双, 等. 伊犁河谷大气降水同位素特征及环境意义[J]. 新疆地质, 2019, 37(3): 378-381. |
[19] | [ Jiang Xinhua, Su Chen, Cheng Zhongshuang, et al. Stable isotopic characteristic and environmental signficance of Ili River valley precipitation[J]. Xinjiang Geology, 2019, 37(3): 378-381. ] |
[20] | 王姣妍. 气候变化对天山西部哈什河径流变化过程的影响分析[J]. 冰川冻土, 2011, 33(5): 1153-1160. |
[20] | [ Wang Jiaoyan. Impacts of climate change on runoff process of Khash River in Western Tianshan Mountains, Xinjiang, China[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1153-1160. ] |
[21] | 张亚璇, 雷晓云, 姜泉泉, 等. 哈什河径流趋势预测及周期分析[J]. 长江科学院院报, 2018, 35(2): 18-22, 56. |
[21] | [ Zhang Yaxuan, Lei Xiaoyun, Jiang Quanquan, et al. Trend and period analysis of long-term run off in Khasu river[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(2): 18-22, 56. ] |
[22] | Draxler R, Hess G D. An overview HYSPLIT-4 modeling system for trajectories dispresion and deposition[J]. Australian Meterorological Magazine, 1998, 47: 295-308. |
[23] | 张亚宁, 张明军, 王圣杰, 等. 基于比湿订正拉格朗日模型的新疆短时强降水的水汽来源[J]. 干旱区研究, 2019, 36(3): 173-186. |
[23] | [ Zhang Yaning, Zhang Mingjun, Wang Shengjie, et al. Moisture source for short-time heavy rainfall in Xinjiang based on specific humidity-adjusted Lagrangian model[J]. Arid Zone Research, 2019, 36(3): 173-186. ] |
[24] | 侯典炯, 秦翔, 吴锦奎, 等. 乌鲁木齐大气降水稳定同位素与水汽来源关系研究[J]. 干旱区资源与环境, 2011, 25(10): 139-145. |
[24] | [ Hou Dianjiong, Qin Xiang, Wu Jinkui, et al. Characteristics of stable isotopes in precipitation and the water vapor sources in Urumqi[J]. Journal of Arid Land Resources and Environment, 2011, 25(10): 139-145. ] |
[25] | 王圣杰, 张明军. 新疆天山降水稳定同位素的时空特征与影响因素[J]. 第四纪研究, 2017, 37(5): 1119-1130. |
[25] | [ Wang Shengjie, Zhang Mingjun. Spatiotemporal characteristics and influencing factors of stable isotope of precipitation across the Chinese Tianshan mountain[J]. Quaternary Sciences, 2017, 37(5): 1119-1130. ] |
[26] | Liu Jianrong, Song Xianfang, Sun Xiaoming, et al. Isotopic composition of precipitation over arid Northwestern China and its implications for the water vapor origin[J]. Geographical Sciences, 2009, 19: 164-174. |
[27] | 隋明浈, 高德强, 徐庆, 等. 江苏高邮大气降水氢氧同位素特征及水汽来源[J]. 应用生态学报, 2019, 30(6): 1823-1832. |
[27] | [ Sui Mingzhen, Gao Deqaing, Xu Qing, et al. Characteristics of hydrogen and oxygene isotopes in precipitation and moisture sources in Gaoyou, Jiangsu Province, China[J]. Journal of Applied Ecology, 2019, 30(6): 1823-1832. ] |
[28] | 汪少勇, 王巧丽, 吴锦奎, 等. 长江源区降水氢氧稳定同位素特征及水汽来源[J]. 环境科学 2019, 40(6): 2615-2623. |
[28] | [ Wang Shaoyong, Wang Qiaoli, Wu Jinkui, et al. Characteristics of stable isotopes in precipitation and moisture sources in the headwater of the Yangtze River[J]. Environmental Science, 2019, 40(6): 2615-2623. ] |
[29] | 袁瑞丰, 李宗省, 蔡玉琴, 等. 干旱内陆河流域降水稳定同位素的时空特征及环境意义[J]. 环境科学 2019, 40(5): 2122-2131. |
[29] | [ Yuan Ruifeng, Li Zongxin, Cai Yuqin, et al. Space-time characteristics and environmental of stable isotopes in precipitation at an arid inland river basin[J]. Environmental Science, 2019, 40(5): 2122-2131. ] |
[30] | 桂娟, 李宗省, 冯起, 等. 古浪河流域大气降水稳定同位素的时空特征及其环境意义[J]. 环境科学, 2019, 40(1): 149-156 |
[30] | [ Gui Juan, Li Zongsheng, Feng Qi, et al. Space-time characteristics and environmental of the stable isotopes in precipitation in the Gulang River basin[J]. Environmental Science, 2019, 40(1): 149-156. ] |
[31] | 李亚举, 张明军, 王圣杰, 等. 基于温度作为辅助变量的中国降水δ18O空间分布特征[J]. 地理科学进展, 2011, 30 (11): 1387-1394. |
[31] | [ Li Yaju, Zhang Mingjun, Wang Shengjie, et al. Spatial distribution of δ18O in China’s precipitation based on a secondary variable of temperature[J]. Progress in Geographical Science, 2011, 30 (11): 1387-1394. ] |
[32] | 李亚举, 张明军, 王圣杰, 等. 我国大气降水中稳定同位素研究进展[J]. 冰川冻土, 2011, 33(3): 624-633. |
[32] | [ Li Yaju, Zhang Mingjun, Wang Shengjie, et al. Preogress of the research of stable isotope inprecipitation in China: A Review[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 624-633. ] |
[33] | 冯芳, 李忠勤, 金爽, 等. 天山乌鲁木齐河流域山区降水δ18O和δD特征及水汽来源分析[J]. 水科学进展 2013, 24(5): 634-641. |
[33] | [ Feng Fang, Li Zhongqin, Jin Shuang, et al. Characteristics of δ18O and δD in precipitation and its water vapor sources in the upper Urumqi River basin, Eastern Tianshan[J]. Advances in Water Sciences, 2013, 24(5): 634-641. ] |
[34] | 王宁练, 张世彪, 蒲健辰, 等. 黑河上游河水中δ18O季节变化特征及其影响因素研究[J]. 冰川冻土, 2008, 30(6): 914-920. |
[34] | [ Wang Ninglian, Zhang Shibiao, Pu Jianchen, et al. Seansonal variation of δ18O in river in the upper reaches of Heihe river basin and its influence factors[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 914-920. ] |
[35] | 李永格, 李宗省, 冯起, 等. 托来河流域不同海拔降水稳定同位素的环境意义[J]. 环境科学, 2018, 39(6): 159-170. |
[35] | [ Li Yongge, Li Zongsheng, Feng Qi, et al. Environmental significance of the stable isotopes in precipitation at different altitudes in the Tuolai Riverb Basin[J]. Environmental Science, 2019, 39(6): 159-170. ] |
[36] | 孔彦龙. 基于氘盈余的内陆干旱区水汽再循环研究[D]. 北京: 中国科学院大学, 2013. |
[36] | [ Kong Yanlong. Quantifying Recycled Moidture Fraction in Precipitation of An Arid Region Using Deuterium Excess[D]. Beijing: University of Chinese Academy of Science, 2013. ] |
[37] | Aizen V B, Aizen E M, Joswiak D R, et al. Climatic and atmospheric circulation pattern variability from ice-core isotope /geochemistry records(Altai, Tien Shan and Tibet)[J]. Annals of Glaciology, 2006, 4(3): 49-60. |
[38] | 侯浩, 侯书贵, 庞洪喜. 阿尔泰山蒙赫海尔汗冰川不同水体稳定同位素空间分布特征及水汽来源[J]. 冰川冻土, 2014, 36(5): 1271-1279. |
[38] | [ Hou Hao, Hou Shugui, Pang Hongxi. Stable isotopes in different water samples on the Monh Hayrhan Glacier, Altay Mountains: Spatial distribution features and vapor sources[J]. Journal of Glaciology and Geocryology, 2014, 36( 5): 1271-1279. ] |
/
〈 | 〉 |