2014—2018年青海省云水资源时空分布特征
收稿日期: 2020-12-09
修回日期: 2021-02-01
网络出版日期: 2021-09-24
基金资助
国家自然科学基金项目(41665008);国家自然科学基金项目(41705121);国家重点研发计划(2019YFC1510302);青海省自然科学基金(2017-ZJ-944Q);青海省气象局重点项目(QXZ2020-06)
Analysis of spatial and temporal distribution characteristics of cloud water resources in Qinghai Province from 2014 to 2018
Received date: 2020-12-09
Revised date: 2021-02-01
Online published: 2021-09-24
利用水平分辨率为0.25°×0.25°的ERA5小时再分析资料,采用CWR-MEM方法和EOF方法对2014—2018年青海省降水、水汽、水凝物及空中云水资源进行分析。结果表明:青海省年降水分布呈东南多、西北少阶梯性递减特征,空间分布极不均匀。水汽分布带主要为北部的柴达木—青海湖—河湟谷地分布带、西南部的可可西里—治多—杂多分布带和东南部的巴颜喀拉山—黄河河曲地区分布带;水凝物和降水分布特征类似,呈东南多西北少的分布格局,在山脉迎风坡相对偏多。水汽主要从南、西南和西北边界输入,水凝物主要从澜沧江和长江源区的西部和南部输入,全省平均水汽和水凝物降水效率分别为0.3%和14%;总云水资源708×108 t,在三江源地区南部及东南部最为丰沛,最高达2000 kg·m-2,祁连山南麓至西宁延伸带的云水资源为次高区,柴达木盆地云水资源总量相对较低。云水资源EOF分解中主要空间分布呈现东北多西南少的阶梯式变化。依据水汽、水凝物输送及云水资源分布特征结合不同区域、不同地形开展有针对性的人工影响天气作业十分必要。
张玉欣,马学谦,韩辉邦,张鹏亮,刘娜 . 2014—2018年青海省云水资源时空分布特征[J]. 干旱区研究, 2021 , 38(5) : 1254 -1262 . DOI: 10.13866/j.azr.2021.05.07
Based on the ERA5-hour reanalysis data (with a horizontal resolution of 0.25°×0.25°), the precipitation, water vapor, hydrocoagulation, and aerial cloud water resources of Qinghai Province were analyzed from 2014 to 2018, using the CCR-MEM and EOF methods. The results showed that the annual precipitation distribution in Qinghai Province was characterized by a greater decline in the southeast and a more limited decline in the northwest, and the spatial distribution was extremely uneven. The water vapor distribution zones were mainly the Qaidam (Qinghai Lake) and Hehuang Valley in the north, the Hoh Xil (Zhiduo) heterotopia distribution zone in the southwest and the Bayan Kera Mountain-Yellow River bend area in the southeast. The distribution characteristics of hydrocoagulants and precipitation were more similar in the southeast than in the northwest, and more in the windward slope of the mountain range.The average precipitation efficiency of water vapor and water condensate was 0.3% and 14%, respectively. The total cloud water resources measured 70.8 billion tons, and were most abundant in the south and southeast of Sanjiangyuan area. The cloud water resources from the southern foot of Qilian Mountain to the extension zone of Xining were the second highest in this area In the decomposition of the EOF method, the main spatial distribution of cloud water resources showed a step-like change in the northeast and southwest. It is urgent to carry out targeted weather modification operations, based on the transport of water vapor and hydrocoagulants and on the distribution characteristics of cloud water resources, combining different regions and different landforms.
[1] | 李大山. 人工影响天气现状与展望[M]. 北京: 气象出版社, 2002. |
[1] | [ Li Dashan. Current Situation and Prospect of Weather Modification[M]. Beijing: Science Press, 2002. ] |
[2] | 张强. 中国西北云水资源开发利用研究[M]. 北京: 气象出版社, 2007. |
[2] | [ Zhang Qiang. Research on Development and Utilization of Cloud Water Resources in Northwest China[M]. Beijing: China Meteorological Press, 2007. ] |
[3] | 杨大生, 王普才. 中国地区夏季6—8月云水含量的垂直分布特征[J]. 大气科学, 2012, 36(1): 89-101. |
[3] | [ Yang Dasheng, Wang Pucai. Characteristcs of vertical distributions of cloud water contents over China during summer[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(1): 89-101. ] |
[4] | 李兴宇, 郭学良, 朱江. 中国地区空中云水资源气候分布特征及变化趋势[J]. 大气科学, 2008, 32(5): 1094-1106. |
[4] | [ Li Xingyu, Guo Xueliang, Zhu Jiang. Climatic distribution features and trends of cloud water resources over China[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(5): 1094-1106. ] |
[5] | Yu R, Yu Y, Zhang M. Comparing cloud radiative properties between the eastern China and the Indian monsoon region[J]. Advances in Atmospheric Sciences, 2001, 18(6): 1090-1102. |
[6] | 林厚博, 游庆龙, 焦洋, 等. 青藏高原及附近水汽输送对其夏季降水影响的分析[J]. 高原气象, 2016, 35(2): 309-317. |
[6] | [ Lin Houbo, You Qinglong, Jiao Yang, et al. Water vapor transportation and its influences on precipitation in summer over Qinghai-Xizang plateau and its surroundings[J]. Plateau Meteorology, 2016, 35(2): 309-317. ] |
[7] | 张洁, 周天军, 宇如聪, 等. 中国春季典型降水异常及相联系的大气水汽输送[J]. 大气科学, 2009, 33(1): 121-134. |
[7] | [ Zhang Jie, Zhou Tianjun, Yu Rucong, et al. Atmospheric water vapor transport and corresponding typical anomalous spring rainfall Patterns in China[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(1): 121-134. ] |
[8] | 赵光平, 姜兵, 王勇, 等. 西北地区东部夏季水汽输送特征及其与降水的关系[J]. 干旱区地理, 2017, 40(2): 239-247. |
[8] | [ Zhao Guangping, Jiang Bing, Wang Yong, et al. Characteristics of summer water vapor transport in the eastern Northwest China and their relationships with precipitation[J]. Arid Land Geography, 2017, 40(2): 239-247. ] |
[9] | 马新平, 尚可政, 李佳耘, 等. 1981-2010年中国西北地区东部大气可降水量的时空变化特征[J]. 中国沙漠, 2015, 35(2): 448-455. |
[9] | [ Ma Xinping, Shang Kezheng, Li Jiayun, et al. Spatial and temporal changes of atmospheric precipitable water in the eastern part of Northwest China from 1981 to 2010[J]. Journal of Desert Research, 2015, 35(2): 448-455. ] |
[10] | 黄小燕, 王圣杰, 王小平. 1960—2015年中国西北地区大气可降水量变化特征[J]. 气象, 2018, 44(9): 1191-1199. |
[10] | [ Huang Xiaoyan, Wang Shengjie, Wang Xiaoping. Variations of precipitable water in Northwest China during 1960-2015[J]. Meteorological Monthly, 2018, 44(9): 1191-1199. ] |
[11] | 刘菊菊, 游庆龙, 王楠. 青藏高原夏季云水含量及其水汽输送年际异常分析[J]. 高原气象, 2019, 38(3): 449-459. |
[11] | [ Liu Juju, You Qinglong, Wang Nan. Interannual anomaly of cloud water content and its connection with water vapor transport over the Qinghai-Tibetan plateau in summer[J]. Plateau Meteorology, 2019, 38(3): 449-459. ] |
[12] | 王凯, 孙美平, 巩宁刚. 西北地区大气水汽含量时空分布及其输送研究[J]. 干旱区地理, 2018, 41(2): 290-297. |
[12] | [ Wang Kai, Sun Meiping, Gong Ninggang. Spatial and temporal distribution and transportation of the water vapor in the northwestern China[J]. Arid Land Geography, 2018, 41(2): 290-297. ] |
[13] | 蔡淼. 中国空中云水资源和降水效率的评估研究[D]. 南京: 南京信息工程大学, 2013. |
[13] | [ Cai Miao, Cloud Water Resources and Precipitation Efficiency Evaluation over China[D]. Nanjing: Nanjing University of Information Science & Technology, 2013. ] |
[14] | 祁艳, 颜玉倩, 李金海, 等. 青藏高原5—10月地表潜热通量与青海同期降水之间的关系[J]. 干旱区研究, 2019, 36(3): 529-536. |
[14] | [ Qi Yan, Yan Yuqian, Li Jinhai, et al. Relationship between surface latent heat flux over the Qinghai-Tibetan plateau and precipitation in Qinghai from May to October[J]. Arid Zone Research, 2019, 36(3): 529-536. ] |
[15] | 黄玉霞, 李栋梁, 王宝鉴, 等. 西北地区近40年年降水异常的时空特征分析[J]. 高原气象, 2004, 23(2): 245-252. |
[15] | [ Huang Yuxia, Li Dongliang, Wang Baojian, et al. Analyese on temporal-spatial features of annual precipitation in Northwest China in 1961-2000[J]. Plateau Meteorology, 2004, 23(2): 245-252. ] |
[16] | 张宁瑾, 肖天贵, 假拉. 1979—2016年青藏高原降水时空特征[J]. 干旱气象, 2018, 36(3): 373-382. |
[16] | [ Zhang Ningjin, Xiao Tiangui, Jia La. Spatial and temporal characteristics of precipitation in the Tibet Plateau from 1979 to 2016[J]. Journal of Arid Meteorology, 2018, 36(3): 373-382. ] |
[17] | 鲁春霞, 王菱, 谢高地, 等. 青藏高原降水的梯度效应及其空间分布模拟[J]. 山地学报, 2007, 25(6): 655-663. |
[17] | [ Lu Chunxia, Wang Ling, Xie Gaodi, et al. Altitude effect of precipitation and spatatial distrbution of Qinghai-Tibetan plateau[J]. Mountain Research, 2007, 25(6): 655-663. ] |
[18] | 李生辰, 李栋梁, 赵平, 等. 青藏高原“三江源地区”雨季水汽输送特征[J]. 气象学报, 2009, 67(4): 591-598. |
[18] | [ Li Shengchen, Li Dongliang, Zhao Ping, et al. The climatic characteristics of vapor transportation in rainy season of the origin area of three rivers in Qinghai-Xizhang plateau[J]. Acta Meteorologica Sinica, 2009, 67(4): 591-598. ] |
[19] | 张良, 王式功, 尚可政, 等. 祁连山区空中水资源研究[J]. 干旱气象, 2007, 5(1): 14-20. |
[19] | [ Zhang Liang, Wang Shigong, Shang Kezheng, et al. Research on vapor and precipitation resources over the Qilian mountain area[J]. Journal of Arid Meteorology, 2007, 5(1): 14-20. ] |
[20] | 高黎明, 张乐乐, 陈克龙. 青海湖流域湿地小气候特征[J]. 干旱区研究, 2019, 36(1): 189-195. |
[20] | [ Gao Liming, Zhang Lele, Cheng Kelong. Microclimate in an alpine wetland in the Qinghai lake basin[J]. Arid Zone Research, 2019, 36(1): 189-195. ] |
[21] | North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110(7): 699-706. |
/
〈 | 〉 |