天气与气候

基于地理探测器分析青藏高原降水δ18O空间分异特征

展开
  • 1. 中国科学院青藏高原研究所 中国科学院青藏高原环境变化与地表过程重点实验室,北京 100101
    2. 中国科学院大学,北京 100049
    3. 中国科学院青藏高原地球科学卓越创新中心,北京 100101
席文涛(1996-),男,硕士研究生,主要从事水稳定同位素循环过程研究. E-mail: xiwentao@itpcas.ac.cn

收稿日期: 2021-02-25

  修回日期: 2021-06-28

  网络出版日期: 2021-09-24

基金资助

国家自然科学基金面上项目(41871068);国家自然科学基金优秀青年科学基金项目(41922002)

Spatial heterogeneity of annual precipitation δ18O over the Tibetan Plateau based on the use of a geographical detector

Expand
  • 1. Key laboratory of Tibetan Environment Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2021-02-25

  Revised date: 2021-06-28

  Online published: 2021-09-24

摘要

地理探测器是研究地理现象的空间分异性,并且定量分析其驱动因子的一种统计方法。利用地理探测器方法对青藏高原24个站点的降水δ18O年均值进行了分析,该方法可在一定程度上反映青藏高原降水δ18O年均值的空间分异性,得出纬度、海拔、经度和降水量对青藏高原降水δ18O年均值空间分异的解释力分别为0.82、0.71、0.57和0.49,温度对青藏高原降水δ18O年均值空间分异的解释力不显著;因子之间的共同作用增强了降水δ18O年均值在空间上的分异性。讨论了青藏高原站点降水δ18O年均值与纬度、经度、海拔、年降水量和年均温之间的关系,并对降水δ18O主控因子的季节变化进行分析,得出纬度对青藏高原降水δ18O年均值、夏季均值和冬季均值空间分异的解释力均为最强。

本文引用格式

席文涛,高晶 . 基于地理探测器分析青藏高原降水δ18O空间分异特征[J]. 干旱区研究, 2021 , 38(5) : 1199 -1206 . DOI: 10.13866/j.azr.2021.05.01

Abstract

The annual precipitation δ18O from 24 stations over the Tibetan Plateau was analyzed based on the use of a geographical detector, which was applied to probe the spatial heterogeneity of precipitation δ18O and to quantitatively understand the drivers. This method was used to successfully reflect the spatial heterogeneity of the annual precipitation δ18O over the Tibetan Plateau. The latitude, altitude, longitude, and precipitation amounts respectively explained 0.82, 0.71, 0.57, and 0.49 of the spatial variation in annual precipitation δ18O. Additionally, the combined effects of different factors enhanced the explanation of spatial variation. The possible influences of latitude, precipitation amount, altitude, and temperature on annual precipitation δ18O and seasonal variations in influential factors that cause the spatial heterogeneity of precipitation δ18O were discussed. We conclude that latitude has the strongest explanatory power in relation to the spatial heterogeneity of annual, summer, and winter mean precipitation δ18O over the Tibetan Plateau.

参考文献

[1] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
[2] Gao Jing, Masson-Delmotte V, Risi C, et al. What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam[J]. Tellus Series B-Chemical and Physical Meteorology, 2013, 65: 1, 21043, doi: 10.3402/tellusb.v65i0.21043.
[3] Guenther F, Aichner B, Siegwolf R, et al. A synthesis of hydrogen isotope variability and its hydrological significance at the Qinghai-Tibetan Plateau[J]. Quaternary International, 2013, 313: 3-16.
[4] Joswiak D R, Yao Tandong, Wu Guangjian, et al. Ice-core evidence of westerly and monsoon moisture contributions in the central Tibetan Plateau[J]. Journal of Glaciology, 2013, 59(213): 56-66.
[5] Ren W, Yao Tandong, Yang Xiaoxin, et al. Implications of variations in δ18O and δD in precipitation at Madoi in the eastern Tibetan Plateau[J]. Quaternary International, 2013, 313-314: 56-61.
[6] Liu Jianrong, Song Xianfang, Yuan Guofu, et al. Stable isotopic compositions of precipitation in China[J]. Tellus Series B-Chemical and Physical Meteorology, 2014, 66: 1, 22569, doi: 10. 3402/tellusb. v66. 22567.
[7] Tian Lide, Yao Tandong, Macclune K, et al. Stable isotopic variations in west China: A consideration of moisture sources[J]. Journal of Geophysical Research-Atmospheres, 2007, 112, D10112, doi: 10.1029/2006JD007718.
[8] Yu Wusheng, Yao Tandong, Tian Lide, et al. Relationships between δ18O in precipitation and air temperature and moisture origin on a south-north transect of the Tibetan Plateau[J]. Atmospheric Research, 2008, 87(2): 158-169.
[9] Chakraborty S, Sinha N, Chattopadhyay R, et al. Atmospheric controls on the precipitation isotopes over the Andaman Islands, Bay of Bengal[J]. Scientific Reports, 2016, 6: 19555.
[10] Dong W, Lin Y, Wright J S, et al. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent[J]. Science Foundation in China, 2016, 7: 19.
[11] 田立德, 姚檀栋, 孙维贞, 等. 青藏高原中部降水稳定同位素变化与季风活动[J]. 地球化学, 2001, 30(3): 217-222.
[11] [ Tian Lide, Yao Tandong, Sun Weizhen, et al. Stable isotope variation of precipitation in the middle of Qinghai-Xizang Plateau and monsoon activity[J]. Geochimica, 2001, 30(3): 217-222. ]
[12] 田立德, 姚檀栋. 青藏高原冰芯高分辨率气候环境记录研究进展[J]. 科学通报, 2016, 61(9): 926-937.
[12] [ Tian Lide, Yao Tandong. High-resolution climatic and environmental records from the Tibetan Plateau ice cores[J]. Chinese Science Bulletin, 2016, 61(9): 926-937. ]
[13] 何由, 高晶, 姚檀栋, 等. 利用不同插值方法对青藏高原降水稳定同位素空间分布分析[J]. 冰川冻土, 2015, 37(2): 351-359.
[13] [ He You, Gao Jing, Yao Tandong, et al. Spatial distribution of stable isotope in precipitation upon the Tibetan Plateau analyzed with various interpolation methods[J]. Journal of Glaciology & Geocryology, 2015, 37(2): 351-359. ]
[14] 高晶, 田立德, 刘勇勤, 等. 青藏高原南部羊卓雍错流域稳定同位素水文循环研究[J]. 科学通报, 2009, 54(15): 2153-2159.
[14] [ Gao Jing, Tian Lide, Liu Yongqin, et al. Oxygen isotope variation in the water cycle of the Yamzho lake Basin in southern Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54(15): 2153-2159. ]
[15] 段克勤, 姚檀栋, 王宁练, 等. 青藏高原南北降水变化差异研究[J]. 冰川冻土, 2008, 30(5): 726-732.
[15] [ Duan Keqin, Yao Tandong, Wang Ninglian, et al. The difference in precipitation variability between the North and South Tibetan Plateaus[J]. Journal of Glaciology and Geocryology, 2008, 30(5): 726-732. ]
[16] 田立德, 姚檀栋, 余武生, 等. 青藏高原水汽输送与冰芯中稳定同位素记录[J]. 第四纪研究, 2006, 26(2): 145-152.
[16] [ Tian Lide, Yao Tandong, Yu Wusheng, et al. Stable isotopes of precipitation and ice core on the Tibetan Plateau and moisture transports[J]. Quaternary Sciences, 2006, 26(2): 145-152. ]
[17] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
[17] [ Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. ]
[18] Yao Tandong, Masson-Delmotte V, Gao Jing, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations[J]. Reviews of Geophysics, 2013, 51: 525-548.
[19] 章新平, 姚檀栋, 中尾正义, 等. 青藏高原及其毗邻地区降水中稳定同位素成分的经向变化[J]. 冰川冻土, 2002, 24(3): 245-253.
[19] [ Zhang Xinping, Yao Tandong, Nakawo Masayoshi, et al. Meridianal variation of stable isotopic compositions in precipitation of the Tibetan Plateau and its adjacent regions[J]. Journal of Glaciolgy and Geocryology, 2002, 24(3): 245-253. ]
[20] 孙从建, 张子宇, 李捷, 等. 青藏高原西北部大气降水稳定同位素时空特征变化[J]. 山地学报, 2018, 36(2): 217-228.
[20] [ Sun Conjian, Zhang Ziyu, Li Jie, et al. Temporal and spatial characteristics of stable isotopes of atmospheric precipitation in the Northwestern Tibetan Plateau[J]. Mountain Research, 2018, 36(2): 217-228. ]
[21] 余武生, 马耀明, 孙维贞, 等. 青藏高原西部降水中δ18O变化特征及其气候意义[J]. 科学通报, 2009, 54(15): 2131-2139.
[21] [ Yu Wusheng, Ma Yaoming, Sun Weizhen, et al. Climatic significance of δ18O records from precipitation on the western Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54(15): 2131-2139. ]
[22] 文蓉, 田立德, 翁永标, 等. 喜马拉雅山南坡降水与河水中δ18O高程效应[J]. 科学通报, 2012, 57(12): 1053-1059.
[22] [ Wen Rong, Tian Lide, Weng Yongbiao, et al. The altitude effect of δ18O in precipitation and river water in the Southern Himalayas[J]. Chinese Science Bulletin, 2012, 57(12): 1053-1059. ]
[23] Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J]. Earth and Planetary Science Letters, 2001, 188(1-2): 253-268.
[24] Yang X, Yao T. Seasonality of moisture supplies to precipitation over the Third Pole: A stable water isotopic perspective[J]. Scientific Reports, 2020, 10(1): 15020.
[25] Adhikari N, Gao J, Yao T D, et al. The main controls of the precipitation stable isotopes at Kathmandu, Nepal[J]. Tellus Series B-Chemical and Physical Meteorology, 2020, 72(1): 1-17.
[26] He Y, Risi C, Gao J, et al. Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data, and atmospheric general circulation modeling[J]. Journal of Geophysical Research-Atmospheres, 2015, 120(9): 3852-3871.
[27] 曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869.
[27] [ Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review[J]. Arid Zone Research, 2020, 37(4): 857-869. ]
[28] 孙从建, 张子宇, 陈伟, 等. 亚洲中部高山降水稳定同位素空间分布特征[J]. 干旱区研究, 2019, 36(1): 19-28.
[28] [ Sun Conjian, Zhang Ziyu, Chen Wei, et al. Spatial distribution ofprecipitation stable isotopes in the alpine zones in Central Asia[J]. Arid Zone Research, 2019, 36(1): 19-28. ]
[29] 张亚宁, 张明军, 王圣杰, 等. 基于比湿订正拉格朗日模型的新疆短时强降水的水汽来源[J]. 干旱区研究, 2019, 36(3): 698-711.
[29] [ Zhang Yaning, Zhang Mingjun, Wang Shengjie, et al. Water vapor sources of short-time heavy rainfall in Xinjiang based on specific humidity-adjusted lagrangian modelel[J]. Arid Zone Research, 2019, 36(3): 698-711. ]
[30] Ma Q, Zhang M, Wang S, et al. Contributions of moisture from local evaporation to precipitations in Southeast China based on hydrogen and oxygen isotopes[J]. Progress in Geography, 2013, 32(11): 1712-1720.
[31] 童佳荣, 周明亮, 孙自永, 等. 基于D, 18O同位素和Hysplit4气团轨迹模型的黑河上游降水水汽来源研究[J]. 干旱区资源与环境, 2016, 30(7): 151-156.
[31] [ Tong Jiarong, Zhou Mingliang, Sun Ziyong, et al. Water vapor sources precipitation in the upper reaches of heihe river: Evidence from stable water isotopes and air mass trajectory model[J]. Journal of Arid Land Resources and Environment, 2016, 30(7): 151-156. ]
[32] Wang S, Jiao R, Zhang M, et al. Changes in below-cloud evaporation affect precipitation isotopes during five decades of warming across China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(7): e2020JD033075.
[33] Wang S, Zhang M, Che Y, et al. Contribution of recycled moisture to precipitation in oases of arid Central Asia: A stable isotope approach[J]. Water Resources Research, 2016, 52(4): 3246-3257.
[34] Wang S, Zhang M, Che Y, et al. Influence of below-cloud evaporation on deuterium excess in precipitation of arid Central Asia and its meteorological controls[J]. Journal of Hydrometeorology, 2016, 17(7): 1973-1984.
[35] Wang S, Zhang M, Hughes C E, et al. Factors controlling stable isotope composition of precipitation in arid conditions: an observation network in the Tianshan Mountains, Central Asia[J]. Tellus Series B-Chemical and Physical Meteorology, 2016, 68(Suppl.): 289-299.
文章导航

/