土壤资源

基于距离聚类与K-means动态聚类的棉田土壤养分评价研究

展开
  • 1.石河子大学农学院,新疆生产建设兵团绿洲生态农业重点实验室,新疆 石河子 832003
    2.新疆兵团农业大数据国家地方联合工程研究中心,新疆 石河子 832003
    3.石河子大学信息科学与技术学院,新疆 石河子 832003
范向龙(1992-),男,博士研究生,研究方向为农业信息技术. E-mail: 1574468658@qq.com

收稿日期: 2020-08-28

  修回日期: 2020-10-02

  网络出版日期: 2021-08-03

基金资助

兵团重点领域创新团队项目(2018CB004);兵团国际合作计划项目(2018BC009);国家博士后面上项目(2017M623282);石河 子大学创新发展专项(CXFZ201903);新疆兵团棉花生产大数据关键技术及农业大数据平台研发应用(2018AA004)

Soil nutrient evaluation of cotton field based on distance clustering and K-means dynamic clustering

Expand
  • 1. Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Agriculture College of Shihezi Universit, Shihezi 832003, Xinjiang, China
    2. National and Local Joint Engineering Research Center for Agricultural Big Data of Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang
    3. School of Information Science and Technology, Shihezi University, Shihezi 832003, China

Received date: 2020-08-28

  Revised date: 2020-10-02

  Online published: 2021-08-03

摘要

为了解棉田土壤养分状况及确定养分丰缺程度,研究采用主成分结合距离聚类、K-means动态聚类以及土壤养分综合评价方法对新疆棉田土壤进行分析评价。结果表明:(1) 在主成分分析中,有效铜、有效锰和碱解氮起主要作用,有效铜含量为1.82 mg·kg-1,丰缺评价状况属于高等水平,有效锰含量为11.36 mg·kg-1,属于较低水平,碱解氮含量为122.07 mg·kg-1,属于高等水平,土壤速效磷、速效钾、有效锌和有效铁含量较低,土壤养分含量分布不均匀。在距离聚类和K-means动态聚类中,有机质、碱解氮、有效锰含量较低,其余养分含量较高。在距离聚类中,土壤各类养分可表示为:第Ⅰ类>第Ⅴ类>第Ⅳ类>第Ⅱ类>第Ⅲ类,而在K-means动态聚类中可以表示为:第Ⅲ类>第Ⅰ类>第Ⅴ类>第Ⅱ类>第Ⅳ类。(2) 在土壤综合肥力指数评价值中(IFI),1连和16连的等级高;2连、3连、4连、6连、15连、19连和二监区的等级较高;8连、9连、10连、11连、12连、17连、18连和20连在中等水平。5连、7连、一监区和农市站的等级较低。K-means动态聚类比距离聚类分类效果好,可以更加科学合理、准确有效地对土壤养分进行综合评价。

本文引用格式

范向龙,吕新,张泽,高攀,张强,印彩霞,易翔 . 基于距离聚类与K-means动态聚类的棉田土壤养分评价研究[J]. 干旱区研究, 2021 , 38(4) : 980 -989 . DOI: 10.13866/j.azr.2021.04.09

Abstract

This study used principal component analysis combined with distance clustering, K-means dynamic clustering, and comprehensive soil nutrient evaluation methods to analyze and evaluate the soil nutrient status of cotton field soil in Xinjiang, China. The results showed that the available copper, manganese, and alkali hydrolyzable nitrogen played a major role principal component analysis: The available copper content was high (1.82 mg·kg-1); the available manganese content was low (11.36 mg·kg-1); and the alkali hydrolyzable nitrogen content was 122.07 mg·kg-1. The available phosphorus, potassium, zinc and iron contents were low. Thus, the distribution of soil nutrients was uneven. In the distance clustering and K-means dynamic clustering, the organic matter, available nitrogen, and available manganese contents were lower, whereas the other nutrient contents were higher. In the distance cluster, the soil nutrients could be expressed as: class I > class V > class IV > class II > class III, whereas the soil nutrients could be expressed in the K-means dynamic cluster as: class III > class I > class V > class II > class IV. In the comprehensive evaluation of soil nutrients (IFI), the grades of 1 and 16 are higher. The second company, third company, fourth company, sixth company, 15th company, 19th company, and the second prison area had higher levels, whereas the 8th, 9th, 10th, 11th, 12th, 17th, 18th and 20th companies were in the middle level. The grades of companies 5, 7, and 1 supervision district and agricultural city station were lower. Thus, K-means dynamic clustering is better than distance clustering, as it can be more scientific, reasonable, accurate, and effective for the comprehensive evaluation of soil nutrients.

参考文献

[1] 陈玉芹, 胡永亮, 张丽萍, 等. 基于主成分和聚类分析的德宏橡胶林土壤肥力评价[J]. 热带作物学报, 2019, 40(8):1461-1467.
[1] [ Chen Yuqin, Hu Yongliang, Zhang Liping, et al. Evaluation of soil fertility of rubber plantation in Dehong based on principal component and cluster analysis[J]. Chinese Journal of Tropical Crops, 2019, 40(8):1461-1467. ]
[2] 任艳芳, 何俊瑜, 张艳超, 等. 贵州省开阳茶园土壤养分状况与肥力质量评价[J]. 土壤, 2016, 48(4):668-674.
[2] [ Ren Yanfang, He Junyu, Zhang Yanchao, et al. Soil nutrient status and comprehensive evaluation of quality of soil fertility of tea garden in Kaiyang of Guizhou Province[J]. Soils, 2016, 48(4):668-674. ]
[3] 赵月玲, 林玉玲, 曹丽英, 等. 基于主成分分析和聚类分析的土壤养分特性研究[J]. 华南农业大学学报, 2013, 34(4):484-488.
[3] [ Zhao Yueling, Lin Yuling, Cao Liying, et al. A study of soil nutrients characteristics based on principal component and cluster analysis[J]. Journal of South China Agricultural University, 2013, 34(4):484-488. ]
[4] 戴余波, 张丽萍, 李国明, 等. 热带作物耕地土壤养分分析及肥力评价[J]. 现代农业科技, 2017, 52(18):155-157.
[4] [ Dai Yubo, Zhang Liping, Li Guoming, et al. Soil nutrient analysis and soil fertility evaluation of tropical crop land[J]. Modern Agricultural Science and Technology, 2017, 52(18):155-157. ]
[5] 刘少春, 张跃彬, 郭家文, 等. 基于养分丰缺分级的蔗田土壤肥力主成分综合分析[J]. 西南农业学报, 2016, 29(3):611-617.
[5] [ Liu Shaochun, Zhang Yuebin, Guo Jiawen, et al. Comprehensive analysis of main components of soil fertility of sugarcane field based on soil nutrient grades[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(3):611-617. ]
[6] 李世瑶, 蔡焕杰, 陈新明. 基于主成分分析的畦灌质量评价[J]. 农业工程学报, 2013, 29(24):86-93.
[6] [ Li Shiyao, Cai Huanjie, Chen Xinming. Evaluation of border irrigation performance based on principal component analyses[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24):86-93. ]
[7] 安云娜, 黄义雄, 官紫玲. 福建东山岛土壤养分综合评价[J]. 安徽农业科学, 2007, 35(13):3926-3927.
[7] [ An Yunna, Huang Yixiong, Guan Ziling. Comprehensive valuation on soil nutrient in Dongshan island of Fujian[J]. Journal of Anhui Agricultural Sciences, 2007, 35(13):3926-3927. ]
[8] 唐佐芯, 李天壁, 陈泽斌, 等. 基于主成分分析和聚类分析的红河州植烟土壤特性研究[J]. 西南农业学报, 2019, 32(7):1607-1613.
[8] [ Tang Zuoxin, Li Tianbi, Chen Zebin, et al. Study of Honghe tobacco-planting soil nutrients characteristics based on principal component and cluster analysis[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(7):1607-1613. ]
[9] 郑琦, 王海江, 董天宇, 等. 基于不同评价方法的绿洲棉田土壤质量综合评价[J]. 灌溉排水学报, 2019, 38(3):90-98.
[9] [ Zheng Qi, Wang Haijiang, Dong Tianyu, et al. Evaluating soil quality of the cotton fields in Oasis of Xinjiang using different methods[J]. Journal of Irrigation and Drainage, 2019, 38(3):90-98. ]
[10] 胡俊建. 守护沙漠绿洲——新疆兵团第二师三十三团生态文明建设纪实[J]. 中国农垦, 2018, 63(4):51-52.
[10] [ Hu Junjian. Guarding the desert and oasis: The record of ecological civilization construction of the 33rd regiment of the second division of Xinjiang Production and Construction Corps[J]. China Agricultural Reclamation, 2018, 63(4):51-52. ]
[11] 古丽努尔·沙布尔哈孜, 尹林克, 热合木都拉·阿地拉, 等. 塔里木河中下游退耕还林还草综合生态效益评价——以新疆生产建设兵团农二师33团为例[J]. 干旱区研究, 2004, 21(2):161-165.
[11] [ Gulnur Sabirhazi, Yin Linke, Rahmuttula Adil, et al. Evaluation on the compositive ecological benefits of withdrawing from farming to afforesting and grass planting in the middle and lower reaches of the Tarim River: A case study in 33rd regiment, second division, Xinjiang Group Company of Production and Construction[J]. Arid Zone Research, 2004, 21(2):161-165. ]
[12] 鲍士旦. 土壤农化分析[M]. 北京. 中国农业出版社, 2016.
[12] [ Bao Shidan. Soil Agrochemical Analysis[M]. Beijing: China Agricultural Press, 2016. ]
[13] 杨晓武. 定边县板凳滩土壤系统分类与土壤肥力评价研究[D]. 杨凌: 西北农林科技大学, 2012.
[13] [ Yang Xiaowu. Soil Taxonomy and Fertility Evaluation of Bandeng Bottomland in Dingbian Country[J]. Yangling: Northwest A & F University, 2021. ]
[14] 张珊珊, 毛云玲, 冯志伟, 等. 云南松林下干巴菌生长土壤有效态微量元素特征及其影响因素[J]. 东北林业大学学报, 2021, 49(3):108-112, 125.
[14] [ Zhang Shanshan, Mao Yunling, Feng Zhiwei, et al. Available microelement characteristics of soil and its influential factors for the growth of Thelephora ganbajun under Pinus yunnanensis forest[J]. Journal of Northeast Forestry University, 2021, 49(3):108-112, 125. ]
[15] 桑慧茹, 王丽学, 陈韶明, 等. 基于主成分分析的RBF神经网络在需水预测中的应用[J]. 水电能源科学, 2017, 35(7):58-61.
[15] [ Sang Huiru, Wang Lixue, Chen Shaoming, et al. Water demand forecast model of RBF neutral networks based on principle component analysis[J]. Hydropower Energy Science, 2017, 35(7):58-61. ]
[16] 李良厚, 李吉跃. 聚类分析在立地分类与土壤肥力评价中的应用[C]// 第三届教育技术与培训国际会议论文集(第5卷), 湖北工业大学, 智能信息技术应用学会, 2010: 484-487.
[16] [ Li Lianghou, Li Jiyue. Application of Clustering Analysis in Classifying Site Type and Evaluating Soil Fertility[C]// Proceedings of 2010 Third International Conference on Education Technology and Training(Volume 5), Hubei University of Technology, Intelligent Information Technology Application Association, 2010: 484-487. ]
[17] 杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23):7-14, 63.
[17] [ Yang Junchuang, Zhao Chao. Survey on K-means clustering algorithm[J]. Computer Engineering and Applications, 2019, 55(23):7-14, 63. ]
[18] 刘雪娇. 数据挖掘中的动态聚类及增量研究[D]. 哈尔滨: 哈尔滨理工大学, 2015.
[18] [ Liu Xuejiao. Research on Dynamic Clustering and Incremental in Data Mining[D]. Harbin: Harbin University of Science and Technology, 2015. ]
[19] 陈迎丽, 何钰, 龚会琴, 等. 基于欧式距离法或因子化法的近红外光谱技术对牛肉掺假鉴定的研究[J]. 食品研究与开发, 2019, 40(15):141-146.
[19] [ Chen Yingli, He Yu, Gong Huiqin, et al. Study on identification of beef adulteration by near infrared spectroscopy based on euclidean distance method or factorization method[J]. Food Research and Development, 2019, 40(15):141-146. ]
[20] Saro, Kavita. Review: Study on simple k-mean and modified k-mean clustering technique[J]. International Journal of Computer Science Engineering and Technology, 2016, 6(7):279-281.
[21] Anil K J, Data clustering: 50 years beyond k-means[J]. Pattern Recognition Letters, 2010, 31(8):651-666.
[22] Hung C H, Chiou H M, Yang W N. Candidate groups search for K-harmonic means data clustering[J]. Applied Mathematical Modelling, 2013, 37(24):10123-10128.
[23] 唐东凯, 王红梅, 胡明, 等. 优化初始聚类中心的改进K-means算法[J]. 小型微型计算机系统, 2018, 39(8):1819-1823.
[23] [ Tang Dongkai, Wang Hongmei, Hu Ming, et al. Optimizing initial cluster center of improved K-means algorithm[J]. Journal of Chinese Computer Systems, 2018, 39(8):1819-1823. ]
[24] 杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23):7-14, 63.
[24] [ Yang Junchao, Zhao Chao. Survey on K-means clustering algorithm[J]. Computer Engineering and Applications, 2019, 55(23):7-14, 63. ]
[25] 付亚丽, 李宏光, 付国润, 等. 红河植烟土壤中微量元素含量分析[J]. 云南农业大学学报(自然科学版), 2012, 27(1):73-79.
[25] [ Fu Yali, Li Hongguang, Fu Guorun, et al. Analysis of soil trace elements in Honghe tobacco-growing area[J]. Journal of Yunnan Agricultural University(Natural Science), 2012, 27(1):73-79. ]
[26] 胡玲, 周丽娟, 王娟, 等. 云南烟区植烟土壤养分状况综合评价[J]. 河南农业科学, 2014, 43(7):52-59.
[26] [ Hu Ling, Zhou Lijuan, Wang Juan, et al. Comprehensive evaluation of soil fertility in tobacco-growing areas in Yunnan Province[J]. Journal of Henan Agricultural Sciences, 2014, 43(7):52-59. ]
[27] 陈江华. 中国植烟土壤及烟草养分综合管理[M]. 北京: 科学出版社, 2008.
[27] [ Chen Jianghua. Integrated Management of Tobacco Soil and Tobacco Nutrients in China[M]. Beijing: Science Press, 2008. ]
[28] 徐建华. 计量地理学[M]. 第一版. 北京: 高等教育出版, 2006: 81-83.
[28] [ Xu Jianhua. Quantitative Geography[M]. First Edition. Beijing: Higher Education Press, 2006: 81-83. ]
[29] 陈留美, 桂林国, 吕家珑, 等. 应用主成分分析和聚类分析评价不同施肥处理条件下新垦淡灰钙土土壤肥力质量[J]. 土壤, 2008, 40(6):971-975.
[29] [ Chen Liumei, Gui Linguo, Lyu Jialong, et al. Evaluation on soil fertility quality of newly cultivated light sierozem under different fertilization with methods of principal component and cluster analyses[J]. Soils, 2008, 40(6):971-975. ]
[30] 白由路, 金继运, 杨俐苹, 等. 农田土壤养分变异与施肥推荐[J]. 植物营养与肥料学报, 2001, 7(2):129-133.
[30] [ Bai Youlu, Jin Jiyun, Yang Liping, et al. Variability of soil nutrients in field and fertilizer recommendation[J]. Journal of Plant Nutrition and Fertilizers, 2001, 7(2):129-133. ]
[31] 刘继明, 宋启亮, 李芝茹, 等. 大兴安岭白桦低质林生态功能评价指标的灰色关联聚类分析[J]. 东北林业大学学报, 2012, 40(8):112-115.
[31] [ Liu Jiming, Song Qiliang, LI Zhiru, et al. Grey relation clustering analysis of evaluation indices of ecological functions of low-quality birch forests in greater Xing’an mountains after reconstruction by different transformation methods[J]. Journal of Northeast Forestry University, 2012, 40(8):112-115. ]
[32] 张新要, 李天福, 蒲文宣. 不同有机质含量土壤饼肥用量对烤烟产量及品质的影响[J]. 耕作与栽培, 2015, 35(5):24-26.
[32] [ Zhang Xinyao, Li Tianfu, Pu Wenxuan. Effects of different cake fertilizer amount on yield and quality of flue-cured tobacco in soil of different organic matter contents[J]. Tillage and Cultivation, 2015, 35(5):24-26. ]
[33] 许自成, 王林, 王金平. 湖南烤烟化学成分与土壤有机质含量的关系[J]. 生态学杂志, 2006, 25(10):1186-1190.
[33] [ Xu Zicheng, Wang Lin, Wang Jinping. Relationships between chemical components of flue-cured tobacco leaf and soil organic matter content in Hunan Province of China Chinese Journal of Ecology[J]Chinese Journal of Ecology, 2006, 25(10):1186-1190. ]
[34] 黄安, 杨联安, 杜挺, 等. 基于主成分分析的土壤养分综合评价[J]. 干旱区研究, 2014, 31(5):819-825.
[34] [ Hang An, Yang Lian’an, Du Ting, et al. Comprehensive assessment of soil nutrients based on PCA[J]. Arid Zone Research, 2014, 31(5):819-825. ]
[35] 田立文, 祁永春, 戴路, 等. 新疆南疆耕地土壤养分含量及其分布特征评价——以阿克苏地区为例[J]. 核农学报, 2019, 34(1):214-223.
[35] [ Tian Liwen, Qi Yongchun, Dai Lu, et al. Evaluation of soil nutrient content and its distribution of cultivated land in south of Xinjiang: Taking Aksu Prefecture as an example[J]. Journal of Nuclear Agricultural Sciences, 2019, 34(1):214-223. ]
[36] 袁宇尧, 李颖德, 任宇强, 等. 新疆阿拉尔垦区密植枣园土壤养分含量调查与分析[J]. 塔里木大学学报, 2016, 28(3):1-6.
[36] [ Yuan Yuyao, Li Yingde, Ren Yuqiang, et al. Survey and analysis of the soil nutrient in close planting jujube gardens in Alar area[J]. Journal of Tarim University, 2016, 28(3):1-6. ]
[37] 张丹, 罗格平, 许文强, 等. 新疆耕地土壤养分时空变化[J]. 干旱区地理, 2008, 31(2):254-263.
[37] [ Zhang Dan, Luo Geping, Xu Wenqiang, et al. Spatial-temporal change of soil nutrients of cultivated land in Xinjiang[J]. Arid Land Geography, 2008, 31(2):254-263. ]
[38] 陈彦. 绿洲农田土壤养分时空变异及精确分区管理研究[D]. 石河子: 石河子大学, 2008.
[38] [ Chen Yan. Study on Spatio-temporal Variability and Definition of Management Zones of Soil Nutrients in Oasis field[D]. Shihezi: Shihezi University, 2008. ]
[39] 孙亚洲. 基于分类距离的土壤系统分类土族单元划分研究——以河南省境内分布的主要土壤为例[D]. 郑州: 郑州大学, 2017.
[39] [ Sun Yazhou. Classification of Soil Family based on Chinese Soil Taxonomy by Using Soil Taxonomic Distance: A Case Study of Soil in Henan province[D]. Zhengzhou: Zhengzhou University, 2017. ]
文章导航

/