水资源及其利用

基于CSLE模型的天山北坡中段山区水力侵蚀时空变化特征及影响因素研究

展开
  • 1.新疆农业大学草业与环境科学学院,新疆 乌鲁木齐 830052
    2.新疆土壤与植物生态过程重点实验室,新疆 乌鲁木齐 830052
    3.新疆维吾尔自治区水土保持生态环境监测总站,新疆 乌鲁木齐 830000
常梦迪(1996-),女,硕士研究生,主要从事水土流失监测与评估、地理信息系统及遥感应用研究. E-mail: 1761316194@qq.com

收稿日期: 2020-11-16

  修回日期: 2021-01-25

  网络出版日期: 2021-08-03

基金资助

新疆维吾尔自治区财政专项“天山北坡典型区水土流失与经济发展关系研究”(213031002)

Study on temporal and spatial variation characteristics and influencing factors of hydraulic erosion in the middle of the northern slope of Tianshan Mountains based on CSLE model

Expand
  • 1. College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2. Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi 830052, Xinjiang, China
    3. General Station Soil and Water Conservation and Ecological Environment Monitoring of Xinjiang, Urumqi 830000, Xinjiang, China

Received date: 2020-11-16

  Revised date: 2021-01-25

  Online published: 2021-08-03

摘要

掌握天山北坡土壤水蚀分异的空间规律及其驱动力,对生态预警和土壤侵蚀防治具有重要意义,为天山北坡区域生态环境的综合治理提供理论依据和数据支持。以天山北坡中段山区为例,基于中国土壤流失方程(Chinese Soil Loss Equation,CSLE),采用野外调研、地理信息系统、数理统计和地理探测器等方法,定量分析2000—2018年研究区土壤水力侵蚀的时空格局特征(面积,强度和地理分布),借助地理探测器探究降雨、地形、土壤、植被对土壤水力侵蚀强度的内在驱动力。结果表明:(1) 2000—2018年天山北坡中段山区土壤水力侵蚀强度主要以微度、轻度侵蚀为主,分别占总面积的32.34%~40.87%、33.36%~43.01%。近20 a的微度、轻度侵蚀的面积均呈下降趋势(-26.70 km2·a-1、-77.47 km2·a-1),而其他侵蚀强度的面积均呈上升趋势(22.10~30.96 km2·a-1),总体上土壤水力侵蚀强度处于增加趋势。(2) 整体土壤侵蚀模数呈乌鲁木齐市>昌吉市>阜康市>呼图壁县>玛纳斯县>沙湾县>石河子市。天山北坡中段山区侵蚀强度的空间分布与降雨、地形、土壤、植被密切相关,土壤类型为棕钙土、草毡土、栗钙土,植被覆盖度小于15%、坡度大于15°和降雨量在400~450 mm范围内的地区为高风险侵蚀区域。(3) 分异性的大小由因子探测器中q值来度量,其q值越大,该影响因素对土壤侵蚀空间分布的解释力越强,呈降雨(0.49)>土壤类型(0.17)>坡度(0.11)>植被覆盖度(0.10)。不同影响因素通过交互作用明显增强土壤侵蚀空间异质性,及植被覆盖度与降雨因子的耦合作用,q值增幅极大,确定土壤侵蚀重点治理区域对全面土壤侵蚀防治具有重要意义。

本文引用格式

常梦迪,王新军,李娜,闫立男,马克,李菊艳 . 基于CSLE模型的天山北坡中段山区水力侵蚀时空变化特征及影响因素研究[J]. 干旱区研究, 2021 , 38(4) : 939 -949 . DOI: 10.13866/j.azr.2021.04.05

Abstract

It is of great significance to ecological early warning and soil erosion prevention on mastering the spatial law and driving force of soil water erosion differentiation on the northern slope of Tianshan Mountains, which could provide theoretical basis and data support for comprehensive management of regional ecological environment on the northern slope of Tianshan Mountains. Taking the mountainous area in the middle of the northern slope of Tianshan Mountains as an example, the temporal and spatial pattern characteristics (area, intensity and geographical distribution) of soil hydraulic erosion in the study area from 2000 to 2018 were quantitatively analyzed by means of field investigation, geographic information system, mathematical statistics and geographic detectors, and the internal driving forces of rainfall, topography, soil and vegetation on soil hydraulic erosion intensity were explored by means of geographic detectors based on the Chinese soil loss equation (CSLE). The results showed that: (1) From 2000 to 2018, the intensity of soil hydraulic erosion in the middle of the northern slope of Tianshan Mountains was mainly slight erosion and mild erosion, accounting for 32.34%-40.87% and 33.36%-43.01% of the total area respectively. In recent 20 years, the area of slight and light erosion had a downward trend (-26.70, -77.47 km2·a-1), while the area of other erosion intensities had an upward trend (22.10-30.96 km2·a-1), and the overall soil hydraulic erosion intensity was in an increasing trend. (2) The overall soil erosion modulus was Urumqi > Changji City > Fukang City > Hutubi County > Manas County > Shawan County > Shihezi City. The spatial distribution of erosion intensity in the middle of the northern slope of the Tianshan Mountains was closely related to rainfall, topography, soil, and vegetation. The soil types were brown calcareous soil, grass felt soil, and chestnut soil. The area with vegetation coverage less than 15%, slope greater than 15° and rainfall in the range of 400-450 mm was a high-risk erosion area. (3) The magnitude of the differentiation was measured by the q value in the factor detector. The greater the q value, the stronger the explanatory power of the influencing factor to the spatial distribution of soil erosion, the rainfall (0.49) > soil type (0.17) > slope (0.11) > vegetation coverage (0.10). Different influencing factors obviously enhanced the spatial heterogeneity of soil erosion through interaction, and the coupling effect of vegetation coverage and rainfall factors made the q value increase greatly. It is of great significance to determine the key control areas of soil erosion for comprehensive soil erosion prevention and control.

参考文献

[1] 陈童尧, 贾燕锋, 王佳楠, 等. 基于InVEST模型的祁连山国家级自然保护区土壤保持现状与功能[J]. 干旱区研究, 2020, 37(1):150-159.
[1] [ Chen Tongyao, Jia Yanfeng, Wang Jianan, et al. Current situation and function of soil conservation in Naional Nature Reserves in the Qilian Mountains based on InVEST model[J]. Arid Zone Research, 2020, 37(1):150-159. ]
[2] Wischmeier W H, Smith D D. Predicting Rainfall-erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation[M]. United States: Agricultural Research Service, 1965: 282.
[3] Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)[J]. Agricultural Handbook, 1997, 703(404):537.
[4] 刘宝元, 谢云, 张科利. 土壤侵蚀预报模型[M]. 北京: 科学出版社, 2001: 252.
[4] [ Liu Baoyuan, Xie Yun, Zhang Keli. Soil Erosion Prediction Model[M]. Beijing: Science Press, 2001: 252. ]
[5] 卢刚. 基于CSLE模型的天山北坡西白杨沟流域土壤侵蚀定量评价[J]. 水土保持通报, 2019, 39(2):124-130, 2.
[5] [ Lu Gang. Quantitative assessment of soil erosion in West Baiyanggou Watershed on North Slopes of Tianshan Mountains based on CSLE model[J]. Bulletin of Soil and Water Conservation, 2019, 39(2):124-130, 2. ]
[6] 何维灿, 赵尚民, 王睿博, 等. 基于GIS和CSLE的山西省土壤侵蚀风险研究[J]. 水土保持研究, 2016, 23(3):58-64.
[6] [ He Weican, Zhao Shangmin, Wang Ruibo, et al. Research on soil erosion risk based on GIS and CSLE in Shanxi Province[J]. Research of Soil and Water Conservation, 2016, 23(3):58-64. ]
[7] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1):116-134.
[7] [ Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134. ]
[8] Wang H, Gao J B, Hou W J. Quantitative attribution analysis of soil erosion in different geomorphological types in Karst Areas: Based on the Geodetector method[J]. Journal of Geographical Sciences, 2019, 29(2):271-286.
[9] 许尔琪, 张红旗, 董光龙. 伊犁河谷土壤水力侵蚀的时空变化研究[J]. 资源科学, 2016, 38(7):1203-1211.
[9] [ Xu Erqi, Zhang Hongqi, Dong Guanglong. Temporal and spatial dynamics of soil water erosion in the Yili Valley[J]. Resources Science, 2016, 38(7):1203-1211. ]
[10] 李宏薇, 许尔琪, 张红旗. 伊犁河谷土壤侵蚀综合分区[J]. 中国农业资源与区划, 2018, 39(4):116-124.
[10] [ Li Hongwei, Xu Erqi, Zhang Hongqi. Soil erosion regionalization in Ili River Valley[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(4):116-124. ]
[11] 中华人民共和国水利部. 第一次全国水利普查水土保持情况公报[J]. 中国水土保持, 2013, 34(10):2-3, 11.
[11] [Ministry of Water Resources of the People’s Republic of China. Bulletin of first national water census for soil and water conservation[J]. Soil and Water Conservation in China, 2013, 34(10):2-3, 11. ]
[12] 中华人民共和国国土资源部. 土地利用现状分类标准(GB/T 21010-2017)[S]. 北京: 中国标准出版社, 2017: 2-6.
[12] [Ministry of Land and Resources of the People’s Republic of China. Classification Standard for Current Land Use (GB/T 21010-2017)[S]. Beijing: Standards Press of China, 2017: 2-6. ]
[13] Perkins T, Adler-Golden S, Matthew M, et al. Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery[J]. Optical Engineering, 2012, 51(11):111707.
[14] 中华人民共和国水利部. 土壤侵蚀分类分级标准(SL190-2007)[S]. 北京: 中国水利水电出版社, 2008: 8.
[14] [Ministry of Water Resources of the People’s Republic of China. Standards for Classification and Gradation of Soil Erosion (SL190-2007)[S]. Beijing: China Water & Power Press, 2008: 8. ]
[15] 章文波, 谢云, 刘宝元. 利用日雨量计算降雨侵蚀力的方法研究[J]. 地理科学, 2002, 22(6):705-711.
[15] [ Zhang Wenbo, Xie Yun, Liu Baoyuan. Rainfall erosivity estimation using daily rainfall amounts[J]. Scientia Geographica Sinica, 2002, 22(6):705-711. ]
[16] Chen F W, Liu C W. Estimation of the spatial rainfall distribution using Inverse Distance Weighting (IDW) in the Middle of Taiwan[J]. Paddy and Water Environment, 2012, 10(3):209-222.
[17] Wischmeier W H, Johnson C B, Cross B V. Soil erodibility nomograph for farmland and construction sites[J]. Journal of Soil and Water Conservation, 1971, 26(5):189-193.
[18] Foster G R, Wischmeier W H. Evaluating irregular slopes for soil loss prediction[J]. Transactions of the ASAE, 1974, 17(2):305-309.
[19] 刘宝元, 毕小刚, 符素华. 北京土壤流失方程[M]. 北京: 科学出版社, 2010: 60.
[19] [ Liu Baoyuan, Bi Xiaogang, Fu Suhua. Beijing Soil Loss Equation[M]. Beijing: Science Press, 2010: 60. ]
[20] McCool D K, Brown L C, Foster G R, et al. Revised slope steepness factor for the Universal Soil Loss Equation[J]. Transactions of the Asae, 1987, 30(5):1387-1396.
[21] Liu B Y, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes[J]. Transactions of the ASAE, 1994, 37(6):1835-1840.
[22] Zhu X, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11):2610-2623.
[23] Choudhury B J, Ahmed N U, Idso S B, et al. Relations between evaporation coefficients and vegetation indices studied by model simulations[J]. Remote Sensing of Environment, 1994, 50(1):1-17.
[24] 崔玉娟. C因子遥感估算方法研究——以北京地区为例[D]. 北京: 北京师范大学, 2009: 37-41.
[24] [ Cui Yujuan. Researches on Application of Remote Sensing Method to Estimating Cover-management Factor: Taking Beijing as the Example[D]. Beijing: Beijing Normal University, 2009: 37-41. ]
[25] 蔡崇法, 丁树文, 史志华, 等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000, 14(2):19-24.
[25] [ Cai Chongfa, Ding Shuwen, Shi Zhihua, et al. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small Watershed[J]. Journal of Soil and Water Conservation, 2000, 14(2):19-24. ]
[26] 唐克丽. 中国水土保持[M]. 北京: 科学出版社, 2004: 321.
[26] [ Tang Keli. Soil and Water Conservation in China[M]. Beijing: Science Press, 2004: 321. ]
[27] 水利部水土保持监测中心. 区域水土流失动态监测技术规定(试行)[R]. 北京: 中华人民共和国水利部, 2018: 11-15.
[27] [Monitoring Center of Soil and Water Conservation, Ministry of Water Resources. Technical Regulations for Dynamic Monitoring of Regional Soil Erosion (Trial)[R]. Beijing: Ministry of Water Resources of the People’s Republic of China, 2018: 11-15. ]
[28] Schmidt S, Alewell C, Meusburger K. Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for grasslands in Switzerland[J]. Remote Sensing of Environment, 2018, 211(4):89-104.
[29] 胡婵娟, 刘国华, 郭雷, 等. 土壤侵蚀对土壤理化性质及土壤微生物的影响[J]. 干旱区研究, 2014, 31(4):702-708.
[29] [ Hu Chanjuan, Liu Guohua, Guo Lei, et al. Effects of soil erosion on soil physicochemical properties and soil microorganisms[J]. Arid Zone Research, 2014, 31(4):702-708. ]
[30] 杨波, 王全九, 董莉丽. 榆林市还林还草后土壤保持功能和经济价值评价[J]. 干旱区研究, 2017, 34(6):1313-1322.
[30] [ Yang Bo, Wang Quanjiu, Dong Lili. Assessment of soil conservation function and economic value in Yulin City after implementing the project of “Grain for Green”[J]. Arid Zone Research, 2017, 34(6):1313-1322. ]
文章导航

/