植物与植物生理

西北干旱区绿洲葡萄园净碳交换及其影响因素

展开
  • 兰州大学资源环境学院,甘肃 兰州730000
张扬(1995-),女,硕士研究生,主要从事干旱区碳循环过程研究. E-mail: zhangyang2018@lzu.edu.cn

收稿日期: 2020-07-19

  修回日期: 2020-10-11

  网络出版日期: 2021-06-17

基金资助

国家自然科学基金面上项目(41871078);国家重点研发计划项目(2018YFC0406602)

Net carbon exchange and its influencing factors of the oasis vineyard in China’s northwest arid region

Expand
  • College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2020-07-19

  Revised date: 2020-10-11

  Online published: 2021-06-17

摘要

研究干旱区绿洲农业生态系统碳收支动态和其碳源汇形成机制对于指导绿洲农业固碳减排至关重要。基于敦煌干旱绿洲葡萄园涡度相关系统观测的CO2通量和相关环境因子数据,估算2019年生长季(5—10月)葡萄园的碳收支总量,同时探究净生态系统碳交换(NEE)的日、季动态及其对叶面积指数(LAI)、光合有效辐射(PAR)、水汽压差(VPD)和空气温度(Ta)等的响应。结果表明:(1) 生长季期间,葡萄园净生态系统碳交换(NEE)、生态系统呼吸(Re)和总初级生产力(GPP)的累计量分别为-647.3、883.2 g C·m-2和1530.5 g C·m-2,Re/GPP值为57.7%,表明其碳消耗强度较低,为强烈的碳汇过程。(2) 生长季NEE量变化呈单峰型(7月峰值),与空气温度的季节变化相似。这表明在水分供应充足的基本条件下,空气温度对于NEE具有显著影响。(3) 生长季NEE受到LAI、PAR、VPD、Ta等生物物理因素的综合作用,在整个生长季PAR是与其相关性最高的环境因子,通过驱动光合作用增加固碳量;生长季LAI先增加后减少,光合固碳量也相应受到影响,进而造成NEE呈先下降后上升趋势。同时,保持VPD处于适宜的范围(20~35 hPa),可有效地提高其固碳能力。

本文引用格式

张扬,朱高峰,秦文华,赵楠,陈惠玲 . 西北干旱区绿洲葡萄园净碳交换及其影响因素[J]. 干旱区研究, 2021 , 38(3) : 833 -842 . DOI: 10.13866/j.azr.2021.03.25

Abstract

Studying carbon budget dynamics and the formation mechanism of carbon sources and sinks in the oasis’s agricultural ecosystem in China’s northwest arid region are crucial. Carbon oxide (CO2) fluxes were measured from May to October during the growing season of the arid oasis vineyard in Dunhuang using the eddy covariance system. Based on the CO2 fluxes and data of relevant environmental factors, carbon exchange cumulative values, the net ecosystem exchange (NEE) dynamics, response to leaf area index (LAI), photosynthetically active radiation (PAR), water vapor deficiency (VPD), and air temperature (Ta) in the vineyard were estimated. Results obtained showed that during the growing season, the total cumulative amount of net ecosystem exchange (NEE), ecosystem respiration (Re), and gross primary productivity (GPP) were -647.3, 883.2, and 1530.5 g C·m-2, respectively. Re/GPP value was 57.7%, indicating a slightly lower carbon consumption intensity and an intense carbon sink process. During the growing season, NEE showed a single peak change and peaked in July; this is similar to the seasonal variation in air temperature. This indicated that air temperature significantly affected NEE under the primary conditions of sufficient water supply. During the growing season, NEE was affected by biophysical factors such as LAI, PAR, VPD, and Ta. PAR was the most relevant environmental factor, increasing carbon sequestration by driving the photosynthesis of vines. LAI increased initially and then decreased during the growing season, causing the photosynthetic carbon sequestration to be affected accordingly; NEE also decreased initially and then increased. Keeping VPD in a suitable range (20-35 hPa) could effectively improve the carbon sequestration capacity of vines.

参考文献

[1] Chu X J, Han G X, Xing Q H, et al. Changes in plant biomass induced by soil moisture variability drive interannual variation in the net ecosystem CO2 exchange over a reclaimed coastal wetland[J]. Agricultural and Forest Meteorology, 2019,264:138-148.
[2] Gao X, Gu F X, Hao W P, et al. Carbon budget of a rainfed spring maize cropland with straw returning on the Loess Plateau, China[J]. Science of the Total Environment, 2017,586:1193-1203.
[3] 于贵瑞, 伏玉玲, 孙晓敏, 等. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J]. 中国科学(地球科学), 2006,36(增刊):1-21.
[3] [ Yu Guirui, Fu Yuling, Sun Xiaomin, et al. Research progress and development ideas of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX)[J]. Scientia Sinica (Terrae), 2006,36(Suppl. ): 1-21. ]
[4] 王进. 玛纳斯河流域农田生态系统碳动态及其驱动因素研究[D]. 石河子: 石河子大学, 2017.
[4] [ Wang Jin. Study on Agroecosystem Carbon Moving and Driving Factors in the Valley of Manas River[D]. Shihezi: Shihezi University, 2017. ]
[5] Delgado-Baquerizo M, Maestre F T, Gallardo A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013,502:672-676.
[6] Liang J, Zhang L, Wang Y, et al. Turbulence regimes and the validity of similarity theory in the stable boundary layer over complex terrain of the Loess Plateau, China[J]. Journal of Geophysical Research, 2014,119(10):6009-6021.
[7] 刘冉, 李彦, 王勤学, 等. 盐生荒漠生态系统二氧化碳通量的年内、年际变异特征[J]. 中国沙漠, 2011,31(1):108-114.
[7] [ Liu Ran, Li Yan, Wang Qinxue, et al. Seasonal and annual variations of carbon dioxide fluxes in desert ecosystem[J]. Journal of Desert Research, 2011,31(1):108-114. ]
[8] Jia X, Zha T S, Wu B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in Northwest China[J]. Biogeosciences, 2014,11:4679-4693.
[9] 吴利禄, 高翔, 褚建民, 等. 民勤绿洲-荒漠过渡带梭梭人工林净碳交换及其影响因子[J]. 应用生态学报, 2019,30(10):3336-3346.
[9] [ Wu Lilu, Gao Xiang, Chu Jianmin, et al. Net carbon exchange and its driving factors of Haloxylon ammodendron plantation in the oasis-desert ecotone of Minqin, China[J]. Chinese Journal of Applied Ecology, 2019,30(10):3336-3346. ]
[10] 王亚楠, 龙慧灵, 袁占良, 等. 基于涡度相关的黑河玉米生态系统生长季碳通量和固碳能力变化特征研究[J]. 河南农业科学, 2015,44(8):154-159.
[10] [ Wang Yanan, Long Huiling, Yuan Zhanliang, et al. Carbon fluxes and carbon sequestration capacity variation of maize ecosystem in Heihe Basin based on eddy covariance observation[J]. Journal of Henan Agricultural Sciences, 2015,44(8):154-159. ]
[11] 杨鹏举. 绿洲膜下滴灌棉田水热碳通量实验与模拟研究[D]. 北京: 清华大学, 2016.
[11] [ Yang Pengju. Experimental and Numerical Study on Water, Heat and Carbon Fluxes in Cotton Field Sunder Mulched Drip Irrigation in an Oasis[D]. Beijing: Tsinghua University, 2016. ]
[12] 孙文强. 敦煌市葡萄种植户生产经营现状调查分析[D]. 兰州: 甘肃农业大学, 2017.
[12] [ Sun Wenqiang. Investigation and Analysis on Production and Management of Grape Growers in Dunhuang City[D]. Lanzhou: Gansu Agricultural University, 2017. ]
[13] 蔡正旺, 苏雪, 牟迈, 等. 甘肃敦煌南湖自然保护区生物多样性及保护对策[J]. 西北师范大学学报(自然科学版), 2007,43(6):71-78.
[13] [ Cai Zhengwang, Su Xue, Mou Mai, et al. Biodiversity and protection countermeasures in Dunhuang Nanhu nature reserve of Gansu Province[J]. Journal of Northwest Normal University (Natural Science), 2007,43(6):71-78. ]
[14] Bai Y, Zhu G F, Su Y H, et al. Hysteresis loops between canopy conductance of grapevines and meteorological variables in an oasis ecosystem[J]. Agricultural and Forest Meteorology, 2015,214-215:319-327.
[15] Ma J Z, He J H, Qi S, et al. Groundwater recharge and evolution in the Dunhuang Basin, northwestern China[J]. Applied Geochemistry, 2013,28:19-31.
[16] Wutzler T, Lucas-Moffat A, Migliavacca M, et al. Basic and extensible post-processing of eddy covariance flux data with REddyProc[J]. Biogeosciences, 2018,15:5015-5030.
[17] ollinger D Y, Kelliher F M, Byers J N, et al. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere[J]. Ecology, 1994,75:134-150.
[18] Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994,8:315-323.
[19] 陈小平, 刘廷玺, 王冠丽, 等. 温度和水分对科尔沁草甸湿地净生态系统碳交换量的影响[J]. 应用生态学报, 2018,29(5):1523-1534.
[19] [ Chen Xiaoping, Liu Tingxi, Wang Guanli, et al. Effects of temperature and moisture on net ecosystem CO2 exchange over a meadow wetland in the Horqin, China[J]. Chinese Journal of Applied Ecology, 2018,29(5):1523-1534. ]
[20] Liu Y F, Song X, Yu G R, et al. Seasonal variation of CO2 flux and its environmental factors in evergreen coniferous plantation[J]. Science in China, 2005,48(1):123-132.
[21] 李润东, 范雅倩, 冯沛, 等. 北京松山天然落叶阔叶林生态系统净碳交换特征及影响因子[J]. 应用生态学报, 2020,31(11):3621-3630.
[21] [ Li Rundong, Fan Yaqian, Feng Pei, et al. Characteristics of net ecosystem carbon exchange and its affecting factors in a deciduous broad-leaved forest in Songshan, Beijing, China[J]. Chinese Journal of Applied Ecology, 2020,31(11):3621-3630. ]
[22] 唐祥, 陈文婧, 李春义, 等. 北京八达岭林场人工林净碳交换及其环境影响因子[J]. 应用生态学报, 2013,24(11):3057-3064.
[22] [ Tang Xiang, Chen Wenjing, Li Chunyi, et al. Net carbon exchange and its environmental affecting factors in a forest plantation in Badaling, Beijing of China[J]. Chinese Journal of Applied Ecology, 2013,24(11):3057-3064. ]
[23] Zhang L H, Chen Y N, Zhao R F, et al. Significance of temperature and soil water content on soil respiration in three desert ecosystems in Northwest China[J]. Journal of Arid Environments, 2010,74:1200-1211.
[24] Carrana A, Janssens I A, Curiel Yuste J, et al. Seasonal changes in photosynjournal, respiration and NEE of a mixed temperate forest[J]. Agricultural and Forest Meteorology, 2004,126:15-31.
文章导航

/