近40a中巴经济走廊气候变化时空分布特征
收稿日期: 2020-10-10
修回日期: 2020-12-14
网络出版日期: 2021-06-17
基金资助
新疆维吾尔自治区区域协同创新专项(上海合作组织科技伙伴计划及国际科技合作计划)(2019E01005);新疆维吾尔自治区创新环境建设专项-天山青年计划(2019Q038)
Spatio-temporal characteristics of climate change in China-Pakistan Economic Corridor from 1980 to 2019
Received date: 2020-10-10
Revised date: 2020-12-14
Online published: 2021-06-17
中巴经济走廊是“一带一路”倡议的重要组成部分,深入认识该地区气候变化时空分布特征和规律,对于项目顺利实施和安全保障有重大意义。采用CRU TSv4.04逐月地面气候要素数据集,分析1980—2019年中巴经济走廊地区气温、降水、干湿状况的气候变化时空分布特征。结果表明:中巴经济走廊地区气温呈显著上升趋势,中部地区增温速率低于两端地区,最低温度增温速率最快,为0.37 ℃·(10a)-1;平均气温次之,增温速率为0.32 ℃·(10a)-1;最高温度增温速率最慢,为0.29 ℃·(10a)-1。降水量、降水日数与干湿变化的区域性差异较大,其中巴基斯坦西南部降水量显著减少,最大速率为-20 mm·(10a)-1,变干趋势明显;巴基斯坦中部地区降水日数显著增加,最大速率为4 d·(10a)-1。
于志翔,于晓晶,杨帆 . 近40a中巴经济走廊气候变化时空分布特征[J]. 干旱区研究, 2021 , 38(3) : 695 -703 . DOI: 10.13866/j.azr.2021.03.11
The China-Pakistan economic Corridor (CPEC) runs through Kashi, Xinjiang, China, and Pakistan; it is the flagship project of one belt and one road. This region has varied topography, complex and changeable climate, and frequent extreme events. Especially regarding global warming, climate change research has been closely linked to environmental and development issues. It is important for project implementation and security to better understand the spatio-temporal characteristics of climate change in this region. Using the monthly Climatic Research Unit Time Series v. 4.04 (TS v. 4.04), the detailed climatology and change in temperature, precipitation, and dry-wet condition over CPEC during 1980-2019 were analyzed. The results showed that temperature has a significant increasing tendency with the highest rate in the central CPEC than the two ends. The rate of minimum temperature [0.37 °C·(10a) -1] is higher than the mean temperature [0.32 °C·(10a) -1] and maximum temperature [0.29 °C·(10a) -1]. There were larger regional differences in precipitation change, wet days, and dry-wet situations. Precipitation is considerably decreasing in the southwestern CPEC with a maximum rate of -20 mm·(10a)-1. It is getting dry, while the wet days significantly increase in the central CPEC with a maximum rate of 4 d·(10a)-1.
[1] | Shahid Z, Piracha A. Climate Change Impacts in Pakistan: Awareness and Adaptation[J]. The International Journal of Climate Change: Impacts and Responses, 2010,2(1):119-130. |
[2] | 张耀南. 《中巴经济走廊专题》卷首语[J]. 中国科学数据, 2019,4(3):5-7. |
[2] | [ Zhang Yaonan. Preface to the special topic of China-Pakistan Economic Corridor[J]. China Scientific Data, 2019,4(3):5-7. ] |
[3] | 王会军. 气候变化研究与环境和发展问题紧密相扣[J]. 科学通报, 2016,61(10):1027-1028. |
[3] | [ Wang Huijun. Climate change research is closely linked to environmental and development issues[J]. Chinese Science Bulletin, 2016,61(10):1027-1028. ] |
[4] | 丑洁明, 董文杰, 延晓冬. 关于气候变化对社会经济系统影响的机理和途径的探讨[J]. 大气科学, 2016,40(1):191-200. |
[4] | [ Chou Jieming, Dong Wenjie, Yan Xiaodong. The impact of climate change on the socioeconomic system: A mechanistic analysis[J]. Chinese Journal of Atmospheric Sciences, 2016,40(1):191-200. ] |
[5] | IPCC, 2013: Climate Change 2013: The Physical Science Basis Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2013: 1535. |
[6] | 黄艳艳, 王会军. 2020年全球变暖会创新高吗?[J]. 大气科学学报, 2020,43(4):585-591. |
[6] | [ Huang Yanyan, Wang Huijun. How about the global warming in 2020?[J]. Transactions of Atmospheric Sciences, 2020,43(4):585-591. ] |
[7] | 黄建平, 季明霞, 刘玉芝, 等. 干旱半干旱区气候变化研究综述[J]. 气候变化研究进展, 2013,9(1):9-14. |
[7] | [ Huang Jianping, Ji Mingxia, Liu Yuzhi, et al. An overview of arid and semi-arid climate change[J]. Climate Change Research, 2013,9(1):9-14. ] |
[8] | Huang J P, Yu H P, Guan X D, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2015,6(2):166-171. |
[9] | Barlow M, Zaithik B, Paz S, et al. A review of drought in the middle east and Southwest Asia[J]. Journal of Climate, 2016,29:8547-8574. |
[10] | Adnan S, Ullah K, Li S L, et al. Comparison of various drought indices to monitor drought status in Pakistan[J]. Climate Dynamics, 2018,51:1885-1899. |
[11] | Sivakumar M, Lal R, Selvaraju R, et al. Climate Change and Food Security in West Asia and North Africa[M]. Dordrecht: Springer, 2013: 27-51. |
[12] | 张强, 韩兰英, 郝晓翠, 等. 气候变化对中国农业旱灾损失率的影响及其南北区域差异性[J]. 气象学报, 2015,73(6):1092-1103. |
[12] | [ Zhang Qiang, Han Lanying, Hao Xiaocui, et al. On the impact of the climate change on the agricultural disaster loss caused by drought in China and the regional differences between the North and the South[J]. Acta Meteorologica Sinica, 2015,73(6):1092-1103. ] |
[13] | Tangdamrongsub N, Hwang C, Kao Y C. Water storage loss in central and south Asia from GRACE satellite gravity: Correlations with climate data[J]. Natural Hazards, 2011,59(2):749-769. |
[14] | Wang Y J, Zhou B T, Qin D H, et al. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection[J]. Advances in Atmospheric Sciences, 2017,34(3):289-305. |
[15] | 商沙沙, 廉丽姝, 马婷, 等. 近54 a中国西北地区气温和降水的时空变化特征[J]. 干旱区研究, 2018,35(1):1-9. |
[15] | [ Shang Shasha, Lian Lishu, Ma Ting, et al. Spatiotemporal variation of temperature and precipitation in Northwest China in recent 54 years[J]. Arid Zone Research, 2018,35(1):1-9. ] |
[16] | 陈亚宁, 王怀军, 王志成, 等. 西北干旱区极端气候水文事件特征分析[J]. 干旱区地理, 2017,40(1):1-9. |
[16] | [ Chen Yaning, Wang Huaijun, Wang Zhicheng, et al. Characteristics of extreme climatic/hydrological events in the arid region of northwestern China[J]. Arid Land Geography, 2017,40(1):1-9. ] |
[17] | 毛炜峄, 姚俊强, 陈静, 等. 1961—2017年东帕米尔高原极端升温过程气候变化特征[J]. 干旱区研究, 2019,36(6):1368-1378. |
[17] | [ Mao Weiyi, Yao Junqiang, Chen Jing, et al. Change characteristics of extreme temperature-rising process in the east pamirs during 1961-2017[J]. Arid Zone Research, 2019,36(6):1368-1378. ] |
[18] | Ullah W, Wang G J, Ali G, et al. Comparing multiple precipitation products against in-situ observations over different climate regions of Pakistan[J]. Remote Sensing, 2019,11(6):628-652. |
[19] | Ullah S, You Q, Ullah W, et al. Observed changes in maximum and minimum temperatures over China-Pakistan economic corridor during 1980-2016[J]. International Journal of Climatology, 2019,39(3):1457-1475. |
[20] | Ullah S, You Q L, Ullah W, et al. Daytime and nighttime heat wave characteristics based on multiple indices over the China-Pakistan economic corridor[J]. Climate Dynamics, 2019,53:6329-6349. |
[21] | 赵建婷, 王艳君, 苏布达, 等. 印度河流域气温、降水、蒸发及干旱变化特征[J]. 干旱区地理, 2020,43(2):349-359. |
[21] | [ Zhao Jianting, Wang Yanjun, Su Buda, et al. Spatiotemporal distributions of temperature, precipitation, evapotranspiration, and drought in the Indus River Basin[J]. Arid Land Geography, 2020,43(2):349-359. ] |
[22] | Anjum M N, Ding Y J, Shangguan D H. Simulation of the projected climate change impacts on the river flow regimes under CMIP5 RCP scenarios in the westerlies dominated belt, northern Pakistan[J]. Atmospheric Research, 2019,227:233-248. |
[23] | Wang A, Wang Y, Su B, et al. Comparison of changing population exposure to droughts in river basins of the Tarim and the Indus[J]. Earth’s Future, 2020,8(5):1-13. |
[24] | Adnan S, Ullah K, Gao S T. Investigations into precipitation and drought climatologies in south Central Asia with special focus on Pakistan over the period 1951-2010[J]. Journal of Climate, 2016,29(16):6019-6035. |
[25] | Harris I, Osborn T J, Jones P, et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J]. Scientific Data, 2020,7(1):109-126. |
[26] | 闻新宇, 王绍武, 朱锦红. 英国CRU高分辨率格点资料揭示的20世纪中国气候变化[J]. 大气科学, 2006,30(5):894-903. |
[26] | [ Wen Xinyu, Wang Shaowu, Zhu Jinhong. An overview of China climate change over the 20th century using UK UEA/CUR high resolution grid data[J]. China Journal of Atmospheric Sciences, 2006,30(5):894-903. ] |
[27] | 黄秋霞, 赵勇, 何清. 基于CRU资料的中亚地区气候特征[J]. 干旱区研究, 2013,30(3):396-403. |
[27] | [ Huang Qiuxia, Zhao Yong, He Qing. Climatic characteristics in central Asia based on CRU data[J]. Arid Zone Research, 2013,30(3):396-403. ] |
[28] | Cherlet M, Hutchinson C, Reynolds J, et al. World Atlas of Desertification[M]. Luxembourg: Publication Office of the European Union, 2018. |
[29] | 张旺雄, 刘普幸. 1961—2017年柴达木盆地干湿状况及其影响因子[J]. 干旱区研究, 2019,36(6):1391-1400. |
[29] | [ Zhang Wangxiong, Liu Puxing. Surface humid situation and its affecting factors in the Qaidam basin from 1961to 2017[J]. Arid Zone Research, 2019,36(6):1391-1400. ] |
[30] | Monteith J L. Evaporation and surface temperature[J]. Quarterly Journal of the Royal Meteorological Society, 1981,107(451):1-27. |
[31] | Penman H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1948,193(1032):120-145. |
/
〈 | 〉 |