植物与植物生理

极端干旱区花花柴(Karelinia caspia)和胡杨(Populus euphratica)叶凋落物分解和养分释放特征

展开
  • 1.中国科学院新疆生态与地理研究所,新疆荒漠植物根系生态与植被修复重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    3.新疆策勒荒漠草地生态系统国家野外科学观测实验站,新疆 策勒 848300
    4.中国科学院大学,北京 100049
    5.兰州大学,甘肃 兰州 730000
范琳杰(1996-),女,硕士研究生,主要从事干旱区植物生理方面的研究. E-mail:fanlinjie18@mails.ucas.ac.cn

收稿日期: 2020-06-01

  修回日期: 2020-07-27

  网络出版日期: 2021-04-25

基金资助

国家自然科学基金项目(41877420);新疆维吾尔自治区天池百人计划-创新项目(Y842041);新疆科技创新基地建设项目(PT1908)

Decomposition and nutrient release characteristics of Karelinia caspia and Populus euphratica leaf litters in extreme arid regions

Expand
  • 1. Xinjiang Key laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    3. Cele National Field Science Observation and Research Station of Desert Grassland Ecosystem, Cele 848300, Xinjiang, China
    4. University of Chinese Academy of Science, Beijing 100049, China
    5. Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2020-06-01

  Revised date: 2020-07-27

  Online published: 2021-04-25

摘要

为研究凋落物在极端干旱区的分解规律,利用凋落物分解袋法,以塔克拉玛干沙漠南缘策勒绿洲地区优势物种花花柴(Karelinia caspia)和胡杨(Populus euphratica)叶凋落物为研究对象,模拟自然状态,分别在3种生境下:土壤表层0 cm、土壤埋深2 cm、悬挂1 m进行凋落物分解试验,探究不同分解位置下的凋落物质量分解和碳(C)、氮(N)元素含量释放特征。结果表明:不同植物的质量损失率在不同分解位置处理下均存在显著差异,土壤表层0 cm处理下凋落物质量损失显著高于悬挂1 m和土壤埋深2 cm。至凋落物分解试验结束,花花柴质量损失率依次为:土壤表层0 cm(19.91%)>悬挂1 m(15.99%)>土壤埋深2 cm(12.35%)。胡杨质量损失率依次为:土壤表层0 cm(24.15%)>悬挂1 m(13.44%)>土壤埋深2 cm(8.72%)。在整个分解过程中,两种植物叶凋落物N含量呈富集现象,C含量呈释放状态。在不同分解位置下,N元素富集量和C元素量损失差异显著,土壤表层和土壤埋深2 cm凋落物N元素富集量均小于悬挂1 m凋落物,C元素损失量均大于悬挂1 m凋落物。Olson指数衰减模型对凋落物质量残留率进行拟合,两种植物的分解常数k值大小排序均为:土壤表层0 cm>悬挂1 m>土壤埋深2 cm。凋落叶质量残留率多因素方差分析表明在不同分解时间和不同分解位置对凋落物质量残留率影响显著(P<0.01)。在极端干旱区,掩埋条件不是驱动凋落物分解的主要因素,影响凋落物分解的因素主要是光降解。

本文引用格式

范琳杰,李向义,李成道,林丽莎,薛伟 . 极端干旱区花花柴(Karelinia caspia)和胡杨(Populus euphratica)叶凋落物分解和养分释放特征[J]. 干旱区研究, 2021 , 38(2) : 479 -486 . DOI: 10.13866/j.azr.2021.02.19

Abstract

In arid regions, strong solar radiation and photodegradation or physical degradation accelerate the rate of litter decomposition. However, research on the decomposition of litter in extreme arid regions remains limited. In this study, we investigated the litter decomposition rate of plant species in extreme arid regions using the litter bag method. Karelinia caspia and Populus euphratica are two dominant species in Cele Oasis located at the southern margin of the Taklimakan Desert. Litter decomposition tests of K. caspia and P. euphratica were carried out in three habitats (aboveground, 2 cm belowground and hanging 1 m) to explore the mass decomposition of litters and the release of carbon (C) and nitrogen (N) from the litters in each habitat. The mass decomposition rates of K. caspia and P. euphratica showed significant differences at different depths; the mass loss of aboveground (0 cm) litter was significantly higher than that of 1 m hanging and 2 cm belowground litters. At the end of the litter decomposition test, the mass loss of K. caspia and P. euphratica wood was in the order: aboveground (19.91%) > 1 m hanging (15.99%) > 2 cm belowground (12.35%) and aboveground (24.15%) > 1 m hanging (13.44%) > 2 cm belowground (8.72%), respectively. During the entire decomposition process, the N content of litters of both plant species increased, whereas the C content decreased. At different decomposition positions, the enrichment of N and the loss of C varied significantly. The enrichment of N in aboveground and belowground litters was lower than that of hanging litters, whereas the loss of C from above-and belowground litters was greater than that from hanging litters. Olson’s exponential attenuation model was used to fit the mass residual rate of litters. The order of the decomposition constant (k) of the two plant species was in the order: aboveground > hanging > belowground. Additionally, multivariate analysis of the variance of mass residual rate of litters showed that both decomposition time and decomposition position had significant effects on the mass residual rate of litters (P<0.01). Overall, this study shows that in extreme arid regions, litter decomposition is mainly driven by photodegradation, not by the location of litter burial.

参考文献

[1] Luyssaert S, Inglima I, Jung M, et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database[J]. Global Change Biology, 2007,13(12):2509-2537.
[2] Palviainen M, Leena F, Kurka A M, et al. Release of potassium, calcium, iron and aluminium from Norway spruce, Scots pine and silver birch logging residues[J]. Plant and Soil, 2004,259(12):123-136.
[3] Han C, Liu T, Lu X, et al. Effect of litter on soil respiration in a man-made Populus L. forest in a dune-meadow transitional region in China’s Horqin sandy land[J]. Ecological Engineering, 2019,127:276-284.
[4] Cornwell W K, Johannes H C. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[J]. Ecology Letters, 2008,11(10):1065-1071.
[5] Austin A T, Ballare C L. Dual role of lignin in plant litter decomposition in terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010,107, 4618-4622.
[6] Austin A T, Vivanco L. Plant litter decomposition in a semiarid ecosystem controlled by photodegradation[J]. Nature, 2006,442:555-558.
[7] Brandt L A, King J Y, Milchunas D G. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem[J]. Global Change Biology, 2007,13(10):2193-2205.
[8] Lin Y, King J Y. Effects of UV exposure and litter position on decomposition in a California grassland[J]. Ecosystems, 2014,17(1):158-168.
[9] Austin A T, Araujo P I, Leva P E. Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe[J]. Ecology, 2009,90:2642-2647.
[10] Levin S A. Encyclopedia of Biodiversity[M]. Holland: Elsevier, 2013: 100-100.
[11] 朱震达. 塔克拉玛干沙漠风沙地貌研究[M]. 北京: 科学出版社, 1981: 1-26.
[11] [ Zhu Zhenda. Study of Wind and Sand Geomorphology in Taklimakan Desert[M]. Beijing: Science Press, 1981: 1-26. ]
[12] 李江风. 塔克拉玛干沙漠和周边山区天气气候[M]. 北京: 科学出版社, 2003: 1-43.
[12] [ Li Jiangfeng. Climate and Weather in Taklimakan Desert and Surrounding Mountains[M]. Beijing: Science Press, 2003: 1-43. ]
[13] 岳泽伟, 李成道, 李磊, 等. 骆驼刺叶形态和荧光参数对光照的响应[J]. 干旱区研究, 2020,37(3):722-728.
[13] [ Yue Zewei, Li Chengdao, Li Lei, et al. Responses of leaf morphology and fluorescence parameters of Alhagi sparsifolia in different light environments[J]. Arid Zone Research, 2020,37(3):722-728. ]
[14] 唐钢梁, 李向义, 林丽莎, 等. 短期环割对塔克拉玛干沙漠南缘两种荒漠植物的生理影响[J]. 植物生态学报, 2013,37(12):1101-1113 .
[14] [ Tang Gangliang, Li Xiangyi, Lin Lisha, et al. Effects of short-term phloem girdling on physiology in two desert plants in the southern edge of the Taklimakan Desert[J]. Chinese Journal of Plant Ecology, 2013,37(12):1101-1113. ]
[15] 邹陈, 吉春容, 曾凡江, 等. 风沙灾害对策勒绿洲棉花生物量的影响[J]. 沙漠与绿洲气象, 2017,11(4):90-94.
[15] [ Zou Chen, Ji Chunrong, Zeng Fanjiang, et al. The influence of wind-sand disaster on cotton biomass in Cele Oasis[J]. Desert and Oasis Meteorology, 2017,11(4):90-94. ]
[16] 涂利华, 胡红玲, 胡庭兴, 等. 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应[J]. 植物生态学报, 2012,36(2):99-108.
[16] [ Tu Lihua, Hu Hongling, Hu Tingxing, et al. Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the rainy of China[J]. Chinese Journal of Plant Ecology, 2012,36(2):99-108. ]
[17] Li K, Li H, Huangfu C, et al. Species-specific effects of leaf litter on seedling emergence and growth of the invasive Flaveria bidentis and its co-occurring native species: Common garden test[J]. Plant Ecology, 2016,217(12):1-9.
[18] 铁烈华, 符饶, 张仕斌, 等. 模拟氮、硫沉降对华西雨屏区常绿阔叶林凋落叶分解速率的影响[J]. 应用生态学报, 2018,29(7):2243-2250.
[18] [ Tie Liehua, Fu Rao, Zhang Shibin, et al. Effects of simulated nitrogen and sulfur deposition on litter decomposition rate in an evergreen broad-leaved forest in the of China[J]. Chinese Journal of Applied Ecology, 2018,29(7):2243-2250. ]
[19] 赵鹏武, 宋彩玲, 苏日娜, 等. 森林生态系统凋落物研究综述[J]. 内蒙古农业大学学报(自然科学版), 2009,30(2):298-305.
[19] [ Zhao Pengwu, Song Cailling, Su Rina, et al. A review of litters in forest ecosystem[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2009,30(2):298-305. ]
[20] 胡霞, 吴宁, 吴彦, 等. 川西高原季节性雪被覆盖对窄叶鲜卑花凋落物分解和养分动态的影响[J]. 应用生态学报, 2012,23(5):84-90.
[20] [ Hu Xia, Wu Ning, Wu Yan, et al. Effects of snow cover on the decomposition and nutrient dynamics of Sibiraea angustata leaf litter in western Sichuan, Southwest China[J]. Chinese Journal of Applied Ecology, 2012,23(5):84-90. ]
[21] Casas J J, Gessner M O. Leaf litter breakdown in a Mediterranean stream characterised by travertine precipitation[J]. Freshwater Biology, 2010,41(4):781-793.
[22] 郭剑芬, 杨玉盛, 陈光水, 等. 森林凋落物分解研究进展[J]. 林业科学, 2006,42(4):93-100.
[22] [ Guo Jianfen, Yang Yusheng, Chen Guangshui, et al. Advances in the decomposition of forest litter[J]. Scientia Silvae Sinicae, 2006,42(4):93-100. ]
[23] Song P, Zhang N L, Ma K P, et al. Impacts of global warming on litter decomposition[J]. Acta Ecologica Sinica, 2014,34(6):1327-1339.
[24] 谌贤, 刘洋, 唐实玉, 等. 川西亚高山森林凋落物不同分解阶段基质质量特征[J]. 西北植物学报, 2017,37(3):586-594.
[24] [ Chen Xian, Liu Yang, Tang Shiyu, et al. Characteristics of substrate quality variation at different litter decomposition stages in subalpine forest of Western Sichuan[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017,37(3):586-594. ]
[25] Austin A T, Vitousek P M. Precipitation, decomposition, and litter decomposability of Metrosideros polymorpha on Hawai’i[J]. Journal of Ecology, 2000,88(1):129-138.
[26] 金龙, 吴志祥, 杨川, 等. 不同调控措施下橡胶凋落叶分解速率研究[J]. 西南林业大学学报, 2015,35(5):21-26.
[26] [ Jin Long, Wu Zhixiang, Yang Chuan, et al. Study on ecomposition of rubber leaf-litter with different control measures[J]. Journal of Southwest Forestry University, 2015,35(5):21-26. ]
[27] 魏子上, 李慧燕, 李科利, 等. 模拟N沉降和埋土对黄顶菊凋落物分解及养分释放的影响[J]. 生态学杂志, 2017,36(9):2412-2422.
[27] [ Wei Zishang, Li Huiyan, Li Keli, et al. Effects of simulated N deposition and burial on Flaveria bidentis litter decomposition and nutrient release[J]. Chinese Journal of Ecology, 2017,36(9):2412-2422. ]
[28] Santos P F, Whitford W G. The effects of microarthropods on litter decomposition in a Chihuahuan Desert[J]. Ecology, 1981,62(3):654-663.
[29] 李成道, 李向义, Henry J Sun, 等. 极端干旱区花花柴(Karelinia caspia)、骆驼刺(Alhagi sparsifolia)和胡杨(Populus euphratica)叶片凋落物分解特征[J]. 中国沙漠, 2019,39(2):196-204.
[29] [ Li Chengdao, Li Xiangyi, Henry J Sun, et al. Decomposition of Karelinia caspia, Alhagi sparsifolia and Populus euphratica in[J]. Journal of Desert Research, 2019,39(2):196-204. ]
[30] Georgiou C D, Sun H J, Mckay C P, et al. Evidence for photochemical production of reactive oxygen species in desert soils[J]. Nature Communications, 2015,6:7100.
[31] 赵红梅, 黄刚, 马健, 等. 荒漠区地表凋落物分解对季节性降水增加的响应[J]. 植物生态学报, 2012,36(6):471-482.
[31] [ Zhao Hongmei, Huang Gang, Ma Jian, et al. Responses of surface litter decomposition to seasonal water addition in desert[J]. Chinese Journal of Plant Ecology, 2012,36(6):471-482. ]
[32] Chapin F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology[M]. Berlin: Springer Verlag, 2011: 129-144.
[33] 周丽, 李彦, 唐立松, 等. 光降解在凋落物分解中的作用[J]. 生态学杂志, 2011,30(9):2045-2052.
[33] [ Zhou Li, Li Yan, Tang Lishong, et al. Roles of photodegradation in litter decomposition[J]. Chinese Journal of Ecology, 2011,30(9):2045-2052. ]
[34] Fisher F M, Freckman D W, Whitford W G. Decomposition and soil nitrogen availability in Chihuahuan Desert field microcosms[J]. Soil Biology Biochemistry, 1990,22(2):241-249.
[35] Moorheada D L, Reynoldsb J F. A general model of litter decomposition in the northern Chihuahuan Desert[J]. Ecological Modelling, 1991,56(1-4):197-219.
[36] Seastedt T R, Parton W J, Ojima D S. Mass loss and nitrogen dynamics of decaying litter of grasslands: The apparent low nitrogen immobilization potential of root detritus[J]. Canadian Journal of Botany, 1992,70(2):384-391.
[37] 杨晶晶, 周正立, 吕瑞恒, 等. 干旱生境下3种植物叶凋落物分解动态特征[J]. 干旱区研究, 2019,36(4):916-923.
[37] [ Yang Jingjing, Zhou Zhengli, Lyu Ruiheng, et al. Dynamic decomposition of foliar litters of three plant species in arid habitats[J]. Arid Zone Research, 2019,36(4):916-923. ]
[38] 徐波, 朱忠福, 李金洋, 等. 九寨沟国家自然保护区4个典型树种叶片凋落物在林下及高山湖泊中的分解及养分释放特征[J]. 植物生态学报, 2016,40(9):883-892.
[38] [ Xu Bo, Zhu Zhongfu, Li Jinyang, et al. Leaf decomposition and nutrient release of dominant species in the forest and lake in the Jiuzhaigou National Nature Reserve, China[J]. Chinese Journal of Plant Ecology, 2016,40(9):883-892. ]
[39] Mcclaugherty C A, Pastor J, Melillo J, et al. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality[J]. Ecology, 1985,66(1):266-275.
[40] Gang H, Hongmei Z, Yan L. Litter decomposition in hyper-arid deserts: Photodegradation is still important[J]. 2017, 601-602:784.
[41] 刘晶, 谢婉余, 张巧明, 等. 黄土丘陵区不同植物凋落叶片的分解及养分释放特性[J]. 草业学报, 2018,27(9):27-35.
[41] [ Liu Jing, Xie Wanyu, Zhang Qiaoming, et al. Leaf decomposition and nutrient release characteristics of different plant species in the Loess Hilly[J]. Acta Prataculturae Sinica, 2018,27(9):27-35. ]
[42] Berg B, Staaf H. Leaching, accumulation and release of nitrogen in decomposing forest litter[J]. Ecological Bulletins, 1981,33:163-178.
[43] Wu Z D, Wang Y X, Cai Z F, et al. Amount and decomposition characteristics of litters in citrus orchard in Fuzhou, China[J]. Journal of Ecology and Rural Environment, 2010,26(3):231-234.
文章导航

/