植物与植物生理

氮添加和降水变化对红砂生理指标的影响

展开
  • 甘肃农业大学林学院,甘肃 兰州 730070
杨洁(1997-),女,硕士研究生,主要从事荒漠植物生理生态研究. E-mail:yj1230163@163.com

收稿日期: 2020-09-16

  修回日期: 2020-10-14

  网络出版日期: 2021-04-25

基金资助

国家自然科学基金(31960245);国家自然科学基金(31560135);甘肃农业大学学科建设专项(GAU-XKJS-2018-104);对发展中国家常规性科技援助项目(KY202002011);中央财政林业科技推广示范资金([2020]ZYTG15);甘肃省林业科技创新与国际合作资金(GLC2019-418-8);甘肃省科技创新基地与人才计划项目(17JR7WA018);甘肃省重点研发计划项目资助(17YF1WA161)

Effects of nitrogen addition and precipitation on Reaumuria soongorica physiological indices

Expand
  • College of Forestry, Gansu Agricultural University, Lanzhou 730070, Gansu, China

Received date: 2020-09-16

  Revised date: 2020-10-14

  Online published: 2021-04-25

摘要

以红砂幼苗为研究对象,测定了不同降水[降水减少30%(W-)、自然降水(W)和降水增多30%(W+)]和氮添加[N0(0 g·m-2·a-1)、N1(4.6 g·m-2·a-1)、N2(9.2 g·m-2·a-1)、N3(13.8 g·m-2·a-1)]条件下红砂幼苗叶片的脯氨酸(Pro)、叶绿素(Chl)、超氧化物歧化酶(SOD)、过氧化物酶(POD)和可溶性蛋白(SP)含量。结果表明:(1) 在自然降水量(W)和降水量增加30%(W+)条件下,随施氮量的增加,红砂脯氨酸和叶绿素含量呈增加趋势,说明水分条件适宜时,水氮会发挥耦合效应促进脯氨酸和叶绿素的积累。(2) 在无氮添加(N0)和低氮(N1)水平下,自然降水量(W)条件下的POD活性分别显著小于降水量减少30%(W-)条件下的值,中氮(N2)、高氮(N3)水平下则明显相反。说明在低氮水平下,降水量增加抑制POD活性的增加,而中氮和高氮添加极大地减缓这种抑制作用,促进POD活性的增强,表现了氮水间的补偿效应。(3) 在自然降水量(W)条件下,随氮添加量的增加,可溶性蛋白含量先增大后减小,而降水量减少30%(W-)条件下,氮添加对可溶性蛋白含量影响不显著。说明在正常水分条件下,适量的氮素添加会促进植物体内蛋白的转化,但当施氮量达到一定临界值时,氮素含量的持续增加将会抑制可溶性蛋白的产生,而水分亏缺时施氮对可溶性蛋白的转化无显著影响。

本文引用格式

杨洁,单立山,白亚梅,张婉婷,张正中,解婷婷,李毅 . 氮添加和降水变化对红砂生理指标的影响[J]. 干旱区研究, 2021 , 38(2) : 460 -468 . DOI: 10.13866/j.azr.2021.02.17

Abstract

Water and nitrogen are the key factors limiting the growth and development of desert plants. To predict the impact of climate change on desert vegetation growth in the future, understanding the effects of nitrogen and water on plant physiology is essential. We investigated the effects of nitrogen application and precipitation on Reaumuria soongorica seedlings. Proline (Pro), chlorophyll (Chl), superoxide dismutase (SOD), peroxidase (POD), and soluble protein (SP) contents in R. soongorica leaves were measured under different precipitation treatments [precipitation decreases 30% (W-), natural precipitation (W), and precipitation increases 30% (W+)] and nitrogen applications [N0(0 g·m -2·a-1), N1 (4.6 g·m-2·a-1), N2 (9.2 g·m-2·a-1), N3 (13.8 g·m-2·a-1)]. Under natural precipitation (W) and precipitation increases 30% (W+), proline and chlorophyll contents increased with increased nitrogen application. The coupling effect of water and nitrogen promoted the accumulation of proline and chlorophyll when the water condition was suitable. In the no nitrogen (N0) and low nitrogen (N1) treatments, POD activity under natural precipitation (W) was significantly lower than that under precipitation decreases 30% (W-), while the opposite trend was observed in the medium nitrogen (N2) and high nitrogen (N3) treatments. The results showed that at low nitrogen levels, increased precipitation inhibited POD activity, while the addition of nitrogen mitigated the inhibition and promoted POD activity, demonstrating the compensation effects of nitrogen and water. Under natural precipitation (W) conditions, the soluble protein content first increased and then decreased as the nitrogen concentration increased, while the effect of nitrogen addition on soluble protein content was not significant under precipitation decreases 30% (W-). These findings demonstrate that under normal water conditions, appropriate nitrogen addition could promote the transformation of plant protein up to a certain concentration threshold, then continuous nitrogen increases inhibit soluble protein production. Conversely, nitrogen application had no significant effect on soluble protein transformation under water deficits.

参考文献

[1] Holland E A, Dentener F J, Braswell B H, et al. Contemporary and pre-industrial global reactive nitrogen budgets[J]. Biogeochemistry, 1999,46(1):7-43.
[2] Lamarque J F, Kiehl J T, Brasseur G P, et al. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition[J]. Journal of Geophysical Research Atmospheres, 2005,110(D19):2657-2677.
[3] 王秀波, 上官周平. 干旱胁迫下氮素对不同基因型小麦根系活力和生长的调控[J]. 麦类作物学报, 2017,37(6):820-827.
[3] [ Wang Xiubo, Shangguan Zhouping. Effect of nitrogen on root vigor and growth in different genotypes of wheat under drought stress[J]. Journal of Triticeae Crops, 2017,37(6):820-827. ]
[4] 周雅聃, 陈世苹, 宋维民, 等. 不同降水条件下两种荒漠植物的水分利用策略[J]. 植物生态学报, 2011,35(8):789-800.
[4] [ Zhou Yazhen, Chen Shiping, Song Weimin, et al. Water-use strategies of two desert plants along a precipitation gradient in northwestern China[J]. Chinese Journal of Plant Ecology, 2011,35(8):789-800. ]
[5] Bauer G A, Bazzaz F A, Minocha R, et al. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States[J]. Forest Ecology and Management, 2004,196(1):173-186.
[6] Hooper D U, Johnson L. Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation[J]. Biogeochemistry, 1999,46, 247-293.
[7] King J. Seasonal dynamics of fine roots relative to foliage and stem growth in loblolly pine (Pinus taeda L.) as affected by water and nutrient availability[J]. New Phytologist, 2002,154:389-398.
[8] Tesha A J, Kumar D. Effect of fertilizer nitrogen on drought resistance in Coffea arabica L.[J]. The Journal of Agricultural Science, 1978,90(3):625-631.
[9] Brueck H. Effects of nitrogen supply on water-use efficiency of higher plants[J]. Journal of Plant Nutrition and Soil Science, 2008,171(2):201-219.
[10] Shangguan Z P, Shao M A, Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J]. Environmental and experimental botany, 2000,44(2):141-149.
[11] Ashraf M, shabaz M, Ashraf M. Influence of nitrogen supply and water stress on growth and notrogen, phosphorus, potassium and calcium contents in pearl millet[J]. Biologia Plantarum, 2001,44(3):459-462.
[12] 梁银丽, 陈培元. 土壤水分和氮磷营养对冬小麦根苗生长的效应[J]. 作物学报, 1996,23(4):476-482.
[12] [ Liang Yinli, Chen Peiyuan. Effects of soil water, nitrogen and phosphorus supplied on root and seedling growth of wheat[J]. Acta Agronomica Sinica, 1996,23(4):476-482. ]
[13] 王洋, 单立山, 白蕾, 等. 不同坡位对红砂生理指标的影响[J]. 水土保持通报, 2017,37(6):113-118.
[13] [ Wang Yang, Shan Lishan, Bai Lei, et al. Effects of different slope positions on physiological indexes of Reaumuria soongorica[J]. Bulletin of Soil and Water Conservation, 2017,37(6):113-118. ]
[14] 杨晓清, 周再知, 梁坤南, 等. 氮素对模拟胁迫下土沉香幼苗抗旱生理的影响[J]. 热带作物学报, 2013,34(6):1121-1127.
[14] [ Yang Xiaoqing, Zhou Zaizhi, Liang Kunnan, et al. Effects of nitrogen nutrition on physiological traits of the Aquilaria sinensis seedlings under simulated water stress[J]. Chinese Journal of Tropical Crops, 2013,34(6):1121-1127. ]
[15] 周晓兵, 张元明, 王莎莎, 等. 模拟氮沉降和干旱对准噶尔盆地两种一年生荒漠植物生长和光合生理的影响[J]. 植物生态学报, 2010,34(12):1394-1403.
[15] [ Zhou Xiaobing, Zhang Yuanming, Wang Shasha, et al. Combined effects of simulated nitrogen deposition and drought stress on growth and photo-synthetic physiological responses of two annual desert plants in Junggar Basin, China[J]. Chinese Journal of Plant Ecology, 2010,34(12):1394-1403. ]
[16] 刘家琼, 邱明新, 蒲锦春, 等. 我国荒漠典型超旱生植物——红砂[J]. Journal of Integrative Plant Biology, 1982,24(5):485-488.
[16] [ Liu Jiaqiong, Qiu Mingxin, Pu Jinchun, et al. A typical superhydrophyte in desert of China: Reaumuria soongorica[J]. Journal of Integrative Plant Biology, 1982,24(5):485-488. ]
[17] 马茂华, 孔令韶. 新疆呼图壁绿洲外缘的琵琶柴生物生态学特性研究[J]. 植物生态学报, 1998,22(3):46-53.
[17] [ Ma Maohua, Kong Lingshao. The bioecological characteristics of Reaumuria soongorica on the border of oasis at Hutubi, Xinjiang[J]. Chinese Journal of Plant Ecology, 1998,22(3):46-53. ]
[18] 孙百生, 钱金平, 赵欢蕊. 西北典型荒漠植物红砂生物量及根系形态特征对降水格局的响应[J]. 生态环境学报, 2018,27(11):1993-1999.
[18] [ Sun Baisheng, Qian Jinping, Zhao Huanrui. Response of biomass and root morphology of desert plant Corispermum candelabrum to precipitation change in NorthWest China[J]. Ecology and Environmental Sciences, 2018,27(11):1993-1999. ]
[19] 马静, 单立山, 王珊, 等. 不同降水量条件下C3植物红砂—C4植物珍珠混生光合特性研究[J]. 草地学报, 2019,27(4):921-927.
[19] [ Ma Jing, Shan Lishan, Wang Shan, et al. Studies on photosynthetic characteristics of C3 plant Reaumuria soongarica and C4 plant Salsola passerinain a mixed community under different precipitations[J]. Acta Agrestia Sinica, 2019,27(4):921-927. ]
[20] 耿东梅, 单立山, 李毅, 等. 土壤水分胁迫对红砂幼苗叶绿素荧光和抗氧化酶活性的影响[J]. 植物学报, 2014,49(3):282-291.
[20] [ Geng Dongmei, Shan Lishan, Li Yi, et al. Effect of soil water stress on chlorophyll fluorescence and antioxidant enzyme activity in Reaumuria soongorica seedlings[J]. Chinese Bulletin of Botany, 2014,49(3):282-291. ]
[21] 周生荟, 刘玉冰, 谭会娟, 等. 荒漠植物红砂在持续干旱胁迫下的光保护机制研究[J]. 中国沙漠, 2010,30(1):69-73.
[21] [ Zhou Shenghui, Liu Yubing, Tan Huijuan, et al. The photoprotective mechanism of desert plant Reaumuria soogorica under progressive soil drying[J]. Journal of Desert Research, 2010,30(1):69-73. ]
[22] 段桂芳, 单立山, 李毅, 等. 红砂幼苗根系形态特征对降水格局变化的响应[J]. 草业学报, 2016,25(10):95-103.
[22] [ Duan Guifang, Shan Lishan, Li Yi, et al. Response of root morphology to precipitation change in Reaumuria soongorica seedlings[J]. Acta Prataculturae Sinica, 2016,25(10):95-103. ]
[23] 史顺增, 熊德成, 邓飞, 等. 土壤增温、氮添加及其交互作用对杉木幼苗细根生产的影响[J]. 植物生态学报, 2017,41(2):186-195.
[23] [ Shi Shunzeng, Xiong Decheng, Deng Fei, et al. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedlings[J]. Chinese Journal of Plant Ecology, 2017,41(2):186-195. ]
[24] 周紫鹃, 苏培玺, 解婷婷, 等. 不同生境下红砂(Reaumuria soongorica)的生理生化特征及适应性[J]. 中国沙漠, 2014,34(4):1007-1014.
[24] [ Zhou Zijuan, Su Peixi, Xie Tingting, et al. The physiological and biochemical characteristics and environmental adaptability of Reaumuria soongorica in different habitats[J]. Journal of Desert Research, 2014,34(4):1007-1014. ]
[25] 姬江莉, 种培芳, 李毅, 等. 红砂对CO2浓度升高及降水变化的生理生长响应[J]. 西北植物学报, 2017,37(5):923-932.
[25] [ Ji Jiangli, Chong Peifang, Li Yi, et al. Effects of interactive elevated CO2 concentration and precipitation on physiological and biomass characteristics of Reaumuria soongorica[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017,37(5):923-932. ]
[26] 肖春旺. 施水量对毛乌素沙地4种优势植物叶绿素荧光的影响[J]. 草地学报, 2001,9(4):296-301.
[26] [ Xiao Chunwang. Effect of water supply change on chlorophyll fluorescence of four dominant plants in Maowusu Sandland[J]. Acta Agrestia Sinica, 2001,9(4):296-301. ]
[27] 付晓玥, 闫建成, 梁存柱, 等. 干旱与半干旱区一年生植物水势对模拟降水变化的响应[J]. 内蒙古大学学报(自然科学版), 2012,43(2):160-167.
[27] [ Fu Xiaoyue, Yan Jiancheng, Liang Cunzhu, et al. Water potentials of annual plants response to simulated rainfall in arid and semiarid regions[J]. Journal of Inner Mongolia University(Natural Science Edition), 2012,43(2):160-167. ]
[28] 闫建成, 梁存柱, 付晓玥, 等. 草原与荒漠一年生植物性状对降水变化的响应[J]. 草业学报, 2013,22(1):68-76.
[28] [ Yan Jiancheng, Liang Cunzhu, Fu Xiaoyue, et al. The responses of annual plant traits to rainfall variation in steppe and desert regions[J]. Acta Prataculturae Sinica, 2013,22(1):68-76. ]
[29] Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013,494(7438):459-462.
[30] 文海燕. 氮沉降对黄土高原典型草原碳过程的影响[D]. 兰州: 兰州大学, 2013.
[30] [ Wen Haiyan. Effect of Nitrogen Deposition on Carbon Process in Typical Steppe of Loess Plateau[D]. Lanhou: Lanzhou University, 2013. ]
[31] Qin Yongrong, Nong Yanchun, Huang Jiangbin, et al. The comparison of contents of malondialdehyde and proline in the area of Karst area in Northweastern Guangxi Province[J]. Agricultural Science & technology, 2011,12(4):469-473, 575.]
[32] 贾向阳, 种培芳, 张玉洁, 等. 外源NO对NaCl胁迫下红砂幼苗生长和生理特性的影响[J]. 草地学报, 2019,27(3):628-636.
[32] [ Jia Xiangyang, Chong Peifang, Zhang Yujie, et al. Effects of nitric oxide on physiological characteristics and growth of Reaumuria soongorica seedling under NaCl stress[J]. Acta Agrestia Sinica, 2019,27(3):628-636.]
[33] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
[33] [ Li Hesheng. Principles and Techniques of Plant Physiological and Biochemical Experiments [M]. Beijing: Higher Education Press, 2000. ]
[34] 赵英永, 戴云, 崔秀明, 等. 考马斯亮蓝G-250染色法测定草乌中可溶性蛋白质含量[J]. 云南民族大学学报(自然科学版), 2006,15(3):235-237.
[34] [ Zhao Yingyong, Dai Yun, Cui Xiuming, et al. Determination of protein contents of radix Aconiti kusnezoffii using Coomassie brillant blue G-250 dye binding[J]. Journal of Yunnan Minzu University(Natural Sciences Edition), 2006,15(3):235-237. ]
[35] 曹仪植, 宋占午. 植物生理学[M]. 兰州: 兰州大学出版社, 1998: 144-157.
[35] [ Cao Yizhi, Song Zhanwu. Plant Physiology[M]. Lanzhou: Lanzhou University Press, 1998: 144-157. ]
[36] 党晓宏, 蒙仲举, 高永, 等. 西鄂尔多斯天然荒漠灌丛光合生态适应性[J]. 干旱区研究, 2020,37(2):435-443.
[36] [ Dang Xiaohong, Meng Zhongju, Gao Yong, et al. Photosynthetic characteristics and ecological adaptability of desert shrubs in western Ordos[J]. Arid Zone Research, 2020,37(2):435-443. ]
[37] 余叔文, 汤章城. 植物生理与分子生物学[M] . 北京: 科学出版社, 1999: 262-276.
[37] [ Yu Shuwen, Tang Zhangcheng. Plant Physiology and Molecular Biology[M]. Beijing: Science Press, 1999: 262-276. ]
[38] 任丽花, 余华, 蔡南通, 等. 不同氮素水平对菜用甘薯叶片生理特性的影响[J]. 中国园艺文摘, 2011,27(6):3-5.
[38] [ Ren Lihua, Yu Hua, Cai Nantong, et al. Effects of different nitrogen levels on physiological characteristics of vegetable sweet potato[J]. Chinese Horticulture Abstracts, 2011,27(6):3-5. ]
[39] 周静, 张仁陟. 不同耕作措施下春小麦应对干旱胁迫的生理响应[J]. 干旱区研究, 2010,27(1):39-43.
[39] [ Zhou Jing, Zhang Renzhi. Physiological responses of spring wheat to drought stress under different cultivation measures[J]. Arid Zone Research, 2010,27(1):39-43.]
[40] 王海茹, 张永清, 董文晓, 等. 水氮耦合对黍稷幼苗形态和生理指标的影响[J]. 中国生态农业学报, 2012,20(11):1420-1426.
[40] [ Wang Hairu, Zhang Yongqing, Dong Wenxiao, et al. Effect of irrigation and nitrogen supply on physio-morphological indices of broomcorn millet at seedling stage[J]. Chinese Journal of Eco-Agriculture, 2012,20(11):1420-1426. ]
[41] 汪德水. 旱地农田肥水关系原理与调控技术[M]. 北京: 中国农业科技出版社, 1995: 195-203.
[41] [ Wang Deshui. Principle and Control Technology of Fertilizer Water Relationship in Dryland Farmland[M]. Beijing: China Agricultural Science and Technology Press, 1995: 195-203. ]
[42] Fusconi A, Berta G. Abiotic Stress Responses in Plants[M]. New York: Springer, 2011: 1-36.
[43] 卫星, 王政权, 张国珍, 等. 水曲柳苗木不同根序对干旱胁迫的生理生化反应[J]. 林业科学, 2009,45(6):16-21.
[43] [ Wei Xing, Wang Zhengquan, Zhang Guozhen, et al. Physiological and biochemical responses of different root orders of Fraxinus mandshurica seedlings to drought stress[J]. Scientia Silvae Sinicae, 2009,45(6):16-21. ]
[44] 张明生, 谢波, 谈锋, 等. 甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J]. 中国农业科学, 2003,36(1):13-16.
[44] [ Zhang Mingsheng, Xie Bo, Tan Feng, et al. Relationship among soluble protein, chlorophyll and ATP in sweet potato under water stress with drought resistance[J]. Scientia Agricultura Sinica, 2003,36(1):13-16. ]
[45] 薛焱, 王迎春, 王同智. 盐胁迫对濒危植物长叶红砂抗氧化系统的影响[J]. 中国沙漠, 2012,32(6):1669-1673.
[45] [ Xue Yan, Wang Yingchun, Wang Tongzhi. Responses of antioxidant system of an endemic halophyte Reaumuria trigyn to NaCl stress[J]. Journal of Desert Research, 2012,32(6):1669-1673. ]
[46] 赵若含, 陈红卫, 欧行奇, 等. 不同氮素水平对冬小麦根叶氧化酶活性的影响[J]. 中国农学通报, 2020,36(11):1-7.
[46] [ Zhao Ruohan, Chen Hongwei, Ou Xingqi, et al. Effect of nitrogen levels on oxidase activities in leaves and roots of winter wheat[J]. Chinese Agricultural Science Bulletin, 2020,36(11):1-7. ]
[47] 邓世媛, 陈建军. 氮素营养对烤烟抗旱适应性的影响[J]. 干旱区研究, 2007,24(4) : 499-503.
[47] [ Deng Shiyuan, Chen Jianjun. Effects of nitrogen nutrient on the drought adaptability of tobacco plants[J]. Arid Zone Research, 2007,24(4) : 499-503. ]
[48] 孙小妹, 张涛, 陈年来, 等. 土壤水分和氮素对春小麦叶片抗氧化系统的影响[J]. 干旱区研究, 2011,28(2):205-214.
[48] [ Sun Xiaomei, Zhang Tao, Chen Nianlai, et al. Study on antioxygenic system in leaves of three spring wheat cultivars with different drought-resistant capabilities under different soil moisture content and nitrogen levels[J]. Arid Zone Research, 2011,28(2):205-214. ]
[49] 郑飞雪, 魏民, 牟同水. NaCl胁迫对羽衣甘蓝生理生化指标的影响[J]. 北方园艺, 2010(17):42-44.
[49] [ Zheng Feixue, Wei Min, Mou Tongshui. Effects of NaCl stress on physiological and biochemical indices in Ornamental kale[J]. Northern Horticulture, 2010(17):42-44. ]
[50] Reddy A R, Chaitanya K V, Jutur P P, et al. Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars[J]. Environmental & Experimental Botany, 2004,52(1):33-42.
[51] 解荣花, 张韬. 干旱胁迫下红砂渗透调节和抗氧化保护系统的响应研究[J]. 甘肃科技, 2015,31(21):137-140, 145.
[51] [ Xie Ronghua, Zhang Tao. Response of osmotic adjustment and antioxidant protection system of Reaumuria soongorica under drought stress[J]. Gansu Science and Technology, 2015,31(21):137-140, 145. ]
[52] 钟小莉, 马晓东, 吕豪豪, 等. 干旱胁迫下氮素对胡杨幼苗生长及光合的影响[J]. 生态学杂志, 2017,36(10):2777-2786.
[52] [ Zhong Xiaoli, Ma Xiaodong, Lyu Haohao, et al. Effect of nitrogen on growth and photosynjournal of Populus euphratica seedlings under drought stress[J]. Chinese Journal of Ecology, 2017,36(10):2777-2786. ]
文章导航

/