天气与气候

基于MOD16数据的焉耆盆地蒸散量变化研究

展开
  • 1.新疆农业大学水利与土木工程学院,新疆 乌鲁木齐 830052
    2.新疆水利工程安全与水灾害防治重点实验室,新疆 乌鲁木齐 830052
    3.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830052
李晴(1996-),女,硕士,研究方向为水利工程. E-mail:lqhnkf0360@126.com

收稿日期: 2020-08-11

  修回日期: 2020-11-12

  网络出版日期: 2021-04-25

基金资助

新疆维吾尔自治区自然科学基金项目(2020D01A54);国家自然科学基金NSFC-新疆联合基金资助(U1703341)

Study of the variation trend of evapotranspiration in the Yanqi Basin based on MOD16 data

Expand
  • 1. College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2. Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, Xinjiang, China
    3. Institute of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830052, Xinjiang, China

Received date: 2020-08-11

  Revised date: 2020-11-12

  Online published: 2021-04-25

摘要

蒸散量是水资源转化中非常关键的变量,特别是对当前变化环境下干旱区作物耗水量的时空变化与预测具有重要的作用。基于2001—2019年MOD16数据产品,通过遥感反演蒸散量数据,对焉耆盆地实际蒸散量(AET)和潜在蒸散量(PET)的时空变化进行分析,结果表明:(1) MOD16蒸散产品和小型蒸发皿实测数据较为一致(R2=0.94),其精度可以用于分析和探究焉耆盆地蒸散量的时空分布特征。(2) 多年平均AET与PET分别为128.7 mm和1381.5 mm,年际变化尺度上AET呈上升趋势,PET呈下降趋势。(3) 多年平均AET与PET在空间分布上呈现出明显的差异特征且表现出相反的趋势,年际AET与PET线性倾斜率处于基本不变趋势。(4) AET与PET的变化趋势与焉耆盆地膜下滴灌技术的普及与气象要素(蒸发量、相对湿度、平均气温)的改变具有内在的联系。

本文引用格式

李晴,杨鹏年,彭亮,周龙,玉素甫江·如素力,王环波,章文亭 . 基于MOD16数据的焉耆盆地蒸散量变化研究[J]. 干旱区研究, 2021 , 38(2) : 351 -358 . DOI: 10.13866/j.azr.2021.02.06

Abstract

Evapotranspiration is a key variable in water resource transformation, and it plays an important role in spatiotemporal variation and prediction of crop water consumption in arid regions under the current environmental changes. Based on MOD16 data products from 2001 to 2019, this paper analyzes the spatial and temporal changes of actual evapotranspiration (AET) and potential evapotranspiration (PET) in the Yanqi Basin in Xinjian Province, China, through remote sensing inversion of evapotranspiration data. The findings reveal that: (1) The measured data of MOD16 evapotranspiration products and small evaporating dishes were relatively consistent (R2=0.94), and their accuracy can be used to study and analyze the spatial and temporal distribution characteristics of evapotranspiration in Yanqi Basin. (2) The annual mean AET and PET were 128.7 mm and 1381.5 mm, respectively. On the scale of interannual change, AET exhibited an upward trend, whereas PET exhibited a downward trend. (3) The spatial distribution of the perennial averages of AET and PET exhibited obvious differences and opposite trends, and the linear inclination rate of annual AET and PET was basically unchanged. (4) The trend of variation of AET and PET is intrinsically related to the popularization of drip irrigation technology under plastic film in Yanqi Basin and the change of meteorological factors (evaporation, relative humidity, average temperature).

参考文献

[1] 周彦昭, 周剑, 李妍, 等. 利用SEBAL和改进的SEBAL模型估算黑河中游戈壁、绿洲的蒸散发[J]. 冰川冻土, 2014,36(6):1526-1537.
[1] [ Zhou Yanzhao, Zhou Jian, Li Yan, et al. Simulating the evapotranspiration with SEBAL and modified SEBAL(M-SEBAL)models over the desert and oasis of the middle reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2014,36(6):1526-1537. ]
[2] Chahine M T. The hydrological cycle and its influence on climate[J]. Nature, 1996,359(6349):373-380.
[3] 阿迪来·乌甫, 玉素甫江·如素力, 热伊莱·卡得尔, 等. 基于MODIS数据的新疆地表蒸散量时空分布及变化趋势分析[J]. 地理研究, 2017,36(7):1245-1256.
[3] [ Adilai Wufu, Yusufujiang Rusuli, Reyilai Kadeer, et al. Spatio-temporal distribution and evolution trend of evapotranspiration in Xinjiang based on MOD16 data[J]. Geographical Research, 2017,36(7):1245-1256. ]
[4] 董晴晴, 占车生, 王会肖, 等. 2000年以来的渭河流域实际蒸散发时空格局分析[J]. 干旱区地理, 2016,39(2):327-335.
[4] [ Dong Qingqing, Zhan Chesheng, Wang Huixiao, et al. Spatio-temporal patterns of actual evapotranspiration in the Weihe River Basin since 2000[J]. Arid Land Geography, 2016,39(2):327-335. ]
[5] 赵玲玲, 夏军, 王中根, 等. 北京潜在蒸散发量年内-年际的气候变化特征及成因辨识[J]. 自然资源学报, 2013,28(11):1911-1921.
[5] [ Zhao Lingling, Xia Jun, Wang Zhonggen, et al. The inter-intra annual climatic pattern of potential evaporation in Beijing and attribution[J]. Journal of Natural Resources, 2013,28(11):1911-1921. ]
[6] 张明明. 2000—2015年中国干旱半干旱区蒸散发时空变化及其影响因素分析[D]. 西安: 长安大学, 2019.
[6] [ Zhang Mingming. Analysis of the Temporal and Spatial Variation of Evapotranspiration and Its Driving Factors in Arid and Semi-Arid Region of China from 2000 to 2015[D]. Xi’an: Chang’an University, 2019. ]
[7] 杨秀芹, 王磊, 王凯. 基于MOD16产品的淮河流域实际蒸散发时空分布[J]. 冰川冻土, 2015,37(5):1343-1352.
[7] [ Yang Xiuqin, Wang Lei, Wang Kai. Spatio-temporal distribution of terrestrial evapotranspiration in Huaihe River basin based on MOD16 ET data[J]. Journal of Glaciology and Geocryology, 2015,37(5):1343-1352. ]
[8] Mu Q Z, Zhao M S, Runnin S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011,115(8):1781-1800.
[9] 艾力亚·艾尼瓦尔, 玉米提·哈力克, 买尔当·克依木, 等. 基于MOD16产品的塔里木河流域蒸散量时空分布特征[J]. 中国农村水利水电, 2018(9):79-84, 95.
[9] [ Ailiya Ainiwaer, Müt Halik, Maierdang Keyimu, et al. Spatio-temporal variation of evapotranspiration in the Tarim River Basin by using MOD16 products[J]. China Rural Water and Hydropower, 2018(9):79-84, 95. ]
[10] 王芳, 汪左, 张运, 等. 基于MOD16的安徽省地表蒸散量时空变化特征[J]. 长江流域资源与环境, 2018,27(3):523-534.
[10] [ Wang Fang, Wang Zuo, Zhang Yun, et al. Spatio-temporal variations of evapotranspiration in Anhui Province using MOD16 products[J]. Resources and Environment in the Yangtze Basin, 2018,27(3):523-534. ]
[11] 邱丽莎, 张立峰, 何毅, 等. 2000—2018年祁连山蒸散发时空变化及影响因素[J]. 水土保持研究, 2020,27(3):210-217.
[11] [ Qiu Lisha, Zhang Lifeng, He Yi, et al. Spatiotemporal variations of evapotranspiration and influence factors in Qilian Mountain from 2000 to 2018[J]. Research of Soil and Water Conservation, 2020,27(3):210-217. ]
[12] 冯飞, 姚云军, 张彦彬, 等. 基于MOD16产品的三江平原蒸散量时空分布特征分析[J]. 生态环境学报, 2015,24(11):1858-1864.
[12] [ Feng Fei, Yao Yunjun, Zhang Yanbin, et al. Spatio-temporal variations of evapotranspiration in Sanjiang Plain using MOD16 products[J]. Ecology and Environmental Sciences, 2015,24(11):1858-1864. ]
[13] 刘静, 刘铁军, 杜晓峰, 等. 基于MOD16A2的毛乌素沙地实际蒸散量时空稳定性模拟[J]. 干旱地区农业研究, 2020,38(2):243-250.
[13] [ Liu Jing, Liu Tiejun, Du Xiaofeng, et al. Simulation on spatio-temporal stability of ET based on MOD16A2 in Mu Us sandy land[J]. Agricultural Research in the Arid Areas, 2020,38(2):243-250. ]
[14] 郑荣伟, 程明瀚, 张航. 北京市2005—2015年植被覆盖变化对蒸散发量的影响[J]. 水电能源科学, 2020,38(2):22-25.
[14] [ Zheng Rongwei, Cheng Minghan, Zhang Hang. Impact of land use change on evapotranspiration in Beijing from 2005 to 2015[J]. Water Resources and Power, 2020,38(2):22-25. ]
[15] 刘可, 杜灵通, 候静, 等. 2000—2014年宁夏草地蒸散时空特征及演变规律[J]. 草业学报, 2018,27(3):1-12.
[15] [ Liu Ke, Du Lingtong, Hou Jing, et al. Spatio-temporal characteristics and evolution of evapotranspiration of natural grassland in Ningxia during 2000-2014[J]. Acta Prataculturae Sinica, 2018,27(3):1-12. ]
[16] 田义超, 梁铭忠, 胡宝清. 2000—2013年北部湾海岸带蒸散量时空动态特征[J]. 农业机械学报, 2015,46(8):146-158.
[16] [ Tian Yichao, Liang Mingzhong, Hu Baoqing. Temporal-spatial dynamic change characteristics of evapotranspirationin Beibu Gulf Coastal Zone during 2000-2013[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(8):146-158. ]
[17] 郭晓寅, 程国栋. 遥感技术应用于地表面蒸散发的研究进展[J]. 地球科学进展, 2004,19(1):107-114.
[17] [ Guo Xiaoyin, Cheng Guodong. Advances in the application of remote sensing to evapotranspiration research[J]. Advances in Earth Science, 2004,19(1):107-114. ]
[18] 靖娟利, 蔡江涛, 耿仁方, 等. 基于MOD16的珠江流域蒸散量时空分布特征[J]. 桂林理工大学学报, 2019,39(4):912-920.
[18] [ Jing Juanli, Cai Jiangtao, Geng Renfang, et al. Spatial-temporal variations of evapotranspiration in Pearl River Basin based on MOD16[J]. Journal of Guilin University of Technology, 2019,39(4):912-920. ]
[19] 郭玉川. 基于遥感的区域蒸散发在干旱区水资源利用中的应用[D]. 乌鲁木齐: 新疆农业大学, 2007.
[19] [ Guo Yuchuan. Application of Regional Evapotranspiration Based on the Remote Sensing for Water Resource Utilization in Arid Aera[D]. Urumqi: Xinjiang Agricultural University, 2007. ]
[20] 宋佳, 徐长春, 杨媛媛, 等. 基于MODIS16的新疆干湿气候时空变化及影响因素[J]. 水土保持研究, 2019,26(5): 210-214, 221, 2.
[20] [ Song Jia, Xu Changchun, Yang Yuanyuan, et al. Temporal and spatial variation characteristics of evapotranspiration and dry-wet climate in Xinjiang based on MODIS16[J]. Research of Soil and Water Conservation, 2019,26(5): 210-214, 221, 2. ]
[21] 马金龙, 刘丽娟, 李小玉, 等. 干旱区绿洲膜下滴灌棉田蒸散过程[J]. 生态学杂志, 2015,34(4):974-981.
[21] [ Ma Jinlong, Liu Lijuan, Li Xiaoyu, et al. Evapotranspiration process of cotton field under mulched drip irrigation of oasis in arid[J]. Chinese Journal of Ecology, 2015,34(4):974-981. ]
[22] 王怡宁, 杨秒, 王兵, 等. 五道沟地区“蒸发悖论”及成因探析[J]. 灌溉排水学报, 2020,39(3):126-133.
[22] [ Wang Yining, Yang Miao, Wang Bing, et al. The “Evaporation Paradox” in Wudaogou area and its underlying mechanisms[J]. Journal of Irrigation and Drainage, 2020,39(3):126-133. ]
[23] 郭梦瑶, 佘敦先, 张利平, 等. 渭河流域潜在蒸散量变化的气候归因[J]. 资源科学, 2020,42(5):907-919.
[23] [ Guo Mengyao, She Dunxian, Zhang Liping, et al. Climate explanation of the potential evapotranspiration changes in Weihe River Basin[J]. Resources Science, 2020,42(5):907-919. ]
[24] 刘波, 肖子牛, 马柱国. 中国不同干湿区蒸发皿蒸发和实际蒸发之间关系的研究[J]. 高原气象, 2010,29(3):629-636.
[24] [ Liu Bo, Xiao Ziniu, Ma Zhuguo. Relationship between pan evaporation and actual evaporation in different humid and arid regions of China[J]. Plateau Meteorology, 2010,29(3):629-636. ]
[25] 杜明亮, 吴彬, 刘江, 等. 新疆地下水利用存在的问题及对策研究[J]. 水利规划与设计, 2017(10):57-59.
[25] [ Du Mingliang, Wu Bin, Liu Jiang, et al. Research on the problems and countermeasures of groundwater utilization in Xinjiang[J]. Water Resources Planning and Design, 2017(10):57-59. ]
文章导航

/