植物与植物生理

干旱胁迫下AMF对多枝柽柳幼苗和疏叶骆驼刺根系生长和氮素吸收分配的影响

展开
  • 新疆特殊环境物种保护与调控生物学自治区重点实验室,干旱区植物逆境生物学实验室,新疆师范大学生命科学学院,新疆 乌鲁木齐 830054
桑钰(1995-),女,硕士研究生,主要从事植物生态研究. E-mail: 1013200771@qq.com

收稿日期: 2020-05-11

  修回日期: 2020-07-24

  网络出版日期: 2021-03-05

基金资助

新疆自然科学基金(2020D01A74);国家自然科学基金(42067067)

Effects of drought stress and arbuscular-mycorrhizal fungi on root growth, nitrogen absorption, and distribution of two desert riparian plant seedlings

Expand
  • Xinjiang Key Laboratory of Special Specis Conservation and Regulatory Biology in Autonomous Region, Key Laboratory of Plant Stess Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi 830054, Xingjiang, China

Received date: 2020-05-11

  Revised date: 2020-07-24

  Online published: 2021-03-05

摘要

丛枝菌根真菌(Arbuscular Mycorrhizal Fungi,AMF)对植物抗旱、养分吸收等有重要作用,但在特定环境胁迫下不同生活型植物对AMF的响应存在差异。本文以塔里木河下游荒漠河岸林的优势灌木多枝柽柳(Tamarix ramosissima)和常见半灌木疏叶骆驼刺(Alhagi sparsifolia)为研究对象,分析了干旱胁迫处理下(对照组土壤相对含水量为70%±5%、实验组土壤相对含水量为20%±5%)接种AMF(对照组不接菌M-、实验组接菌M+)对多枝柽柳与疏叶骆驼刺混合种植(对照组单一种植)根系生长状况和氮素吸收分配的影响。结果表明:(1) 植物遭受干旱胁迫时,多枝柽柳幼苗和疏叶骆驼刺菌根侵染率均降低了,混合种植显著增加了多枝柽柳幼苗的菌根侵染率(P<0.05);(2) 干旱胁迫下,混合种植M+处理显著增加了多枝柽柳幼苗的地上、地下生物量;(3) 干旱胁迫下,AMF使不同种植模式下两种植物的细根根长和细根表面积均显著增加,使疏叶骆驼刺的比根长显著减小,且混合种植M+处理显著减小了多枝柽柳幼苗的细根比根长;(4) 相比单一种植,干旱胁迫下AMF显著增加了混合种植多枝柽柳幼苗的氮摄取量和地上部分氮分配比率。因此,AMF对于干旱胁迫下与疏叶骆驼刺混生的多枝柽柳幼苗的生长和氮素吸收具有明显的补偿作用,能够帮助塔里木河下游多枝柽柳幼苗较好地度过生长脆弱期。

本文引用格式

桑钰,高文礼,再努尔·吐尔逊,范雪,马晓东 . 干旱胁迫下AMF对多枝柽柳幼苗和疏叶骆驼刺根系生长和氮素吸收分配的影响[J]. 干旱区研究, 2021 , 38(1) : 247 -256 . DOI: 10.13866/j.azr.2021.01.26

Abstract

Arbuscular mycorrhizal fungi (AMF) play an essential role in plants’ drought resistance and nutrient absorption. We studied the dominant shrub, T. ramosissima, and the common subshrub, Alhagi sparsifolia, in the desert riparian forest in the lower reaches of the Tarim River. The inoculation of AMF under drought stress management (CK and S, soil relative water contents of 70% ± 5% and 20% ± 5%) and the single (TR, AS) and mixed planting (TR + AS) modes was analyzed. Also, the effects of inoculation and non-inoculation of AMF on the growth and root characteristics of T. ramosissima and A. sparsifolia were compared. The results showed that (1) under drought stress, the mycorrhizal infection rate of T. ramosissima and A. sparsifolia decreased, and the mycorrhizal infection rate of T. ramosissima seedlings increased significantly under mixed planting. (2) Under drought stress, the under-and aboveground biomass of T. ramosissima seedlings increased significantly under mixed planting. (3) Under drought stress, AM significantly increased the roots’ length and surface area of their fine roots under different planting modes and significantly reduced the specific root length of the A. sparsifolia. Also, the ratio of fine roots to root length of T. ramosissima seedlings under M+ treatment was significantly reduced. (4) Compared with single planting, AMF significantly increased the nitrogen intake and distribution ratio in the aboveground part of T. ramosissima seedlings under drought stress. Therefore, AMF has a compensatory effect on the growth and nitrogen absorption of T. ramosissima seedlings mixed with A. sparsifolia under drought stress, which is beneficial for T. ramosissima seedlings in the lower reaches of the Tarim River to survive the fragile growth period.

参考文献

[1] 雷垚, 郝志鹏, 陈保冬. 土著菌根真菌和混生植物对羊草生长和磷营养的影响[J]. 生态学报, 2013,33(4):1071-1079.
[1] [ Lei Yao, Hao Zhipeng, Chen Baodong. Effects of indigenous AM fungi and neighboring plants on the growth and phosphorus nutrition of Leymus chinensis[J]. Acta Ecologica Sinica, 2013,33(4):1071-1079. ]
[2] 李军帅. 丛枝菌根真菌菌丝侵染特性与植物系统性关系的研究[D]. 兰州: 兰州大学, 2016.
[2] [ Li Junshuai. Studying on Between Hyphal Infection Characteristic of AMF and Phylogeny of Plant[D]. Lanzhou: Lanzhou University, 2016. ]
[3] 向丹, 徐天乐, 李欢, 等. 丛枝菌根真菌的生态分布及其影响因子研究进展[J]. 生态学报, 2017,37(11):3597-3606.
[3] [ Xiang Dan, Xu Tianle, Li Huan, et al. Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors[J]. Acta Ecologica Sinica, 2017,37(11):3597-3606. ]
[4] HE X H, Critchley C, Bledsoe C. Nitrogen transfer within and between plants through common mycorrhizalnetworks (CMNs)[J]. Critical Reviews in Plant Sciences, 2003,22(6):531-567.
[5] Booth M G. Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest[J]. Ecology Letters, 2004,7(7):538-546.
[6] 钟小莉, 马晓东, 吕豪豪, 等. 干旱胁迫下氮素对胡杨幼苗生长及光合的影响[J]. 生态学杂志, 2017,36(10):2777-2786.
[6] [ Zhong Xiaoli, Ma Xiaodong, Lyu Haohao, et al. Effect of nitrogen on growth and photosynjournal of Populus euphratica seedlings under drought stress[J]. Chinese Journal of Ecology, 2017,36(10):2777-2786. ]
[7] 马嘉琦. 丛枝菌根真菌对植物耐旱性的影响研究进展[J]. 生物技术世界, 2016(3):63-63.
[7] [ Ma Jiaqi. Effects of arbuscular mycorrhizal fungi on plant drought tolerance: Research progress[J]. Biotech World, 2016(3):63-63. ]
[8] Ali Ganjeali, Elham Ashiani, Maryam Zare, et al. Influences of the arbuscular mycorrhizal fungus Glomus mosseae on morphophysiological traits and biochemical compounds of common bean (Phaseolus vulgaris) under drought stress[J]. South African Journal of Plant and Soil, 2018,35(2):121-127.
[9] Renee H P, Jonathan B G, Todd M P, et al. Habitat-specific AMF symbioses enhance drought tolerance of a native Kenyan grass[J]. Acta Oecologica, 2017,78:71-78.
[10] Ruiz-Lozano J M, Azcón R. Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants[J]. Agriculture, Ecosystems and Environment, 1996,60(2-3):175-181.
[11] Suri V K, Kumar A, Choudhary A. AM-fungi lead to better plant nutrient acquisition and drought tolerance in agricultural crops: A review[J]. Current Advances in Agricultural Sciences, 2017,9(1):1-12.
[12] Ingraffia R, Amato G, Frenda A S, et al. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system[J]. PLoS ONE, 2019,14(3):103116-103116.
[13] Wahbi S, Maghraoui T, Hafidi M, et al. Enhanced transfer of biologically fixed N from faba bean to intercropped wheat through mycorrhizal symbiosis[J]. Applied Soil Ecology, 2016,107:91-98.
[14] 张瑞群, 马晓东, 吕豪豪. 多枝柽柳幼苗生长及其根系解剖结构对水盐胁迫的响应[J]. 草业科学, 2016,33(6):1164-1173.
[14] [ Zhang Ruiqun, Ma Xiaodong, Lyu Haohao. Response of growth and anatomical structure of roots of Tamarix ramosissima seedlings to salinity and water stress[J]. Pratacultural Science, 2016,33(6):1164-1173. ]
[15] 杨玉海, 陈亚宁, 李卫红. 荒漠河岸林植物丛枝菌根真菌侵染及环境影响因子——以塔里木河下游为例[J]. 自然科学进展, 2008,18(4):397-405.
[15] [ Yang Yuhai, Chen Yaning, Li Weihong. Fungal infection of arbuscular mycorrhizal fungi and environmental impact ctors in desert riparitic forests: A case study of the lower Tarim River[J]. Progress in Natural Science, 2008,18(4):397-405. ]
[16] 孟晓燕, 尹林克, 陈理. 塔里木河下游丛枝菌根植物的侵染[J]. 干旱区地理, 2008,31(1):102-108.
[16] [ Meng Xiaoyan, Yin Linke, Chen Li. Arbuscular mycorrhizaes of common plants infection at the lower reaches of Tarim River[J]. Arid Land Geography, 2008,31(1):102-108. ]
[17] 杨玉海, 陈亚宁, 蔡柏岩, 等. 极端干旱区胡杨根围丛枝菌根真菌的分离与鉴定[J]. 干旱区地理, 2012,35(2):260-266.
[17] [ Yang Yuhai, Chen Yaning, Cai Boyan, et al. Arbuscular mycorrhizal in roots of Populus euphratic in the lower reaches of Tarim River in the extreme arid area[J]. Arid Land Geography, 2012,35(2):260-266. ]
[18] 何树斌, 郭理想, 李菁, 等. 丛枝菌根真菌与豆科植物共生体研究进展[J]. 草业学报, 2017,26(1):187-194.
[18] [ He Shubin, Guo Lixiang, Li Jing, et al. Advances in arbuscular mycorrhizal fungi and legumes symbiosis research[J]. Acta Prataculturae Sinica, 2017,26(1):187-194. ]
[19] 王幼珊, 陈理, 张淑彬, 等. 新疆天然胡杨林和野生骆驼刺丛枝菌根真菌多样性研究初报[J]. 干旱区研究, 2010,27(6):927-932.
[19] [ Wang Youshan, Chen Li, Zhang Shubin, et al. Biodiversity of arbuscular mycorrhizal fungi in the natural forests of Populus euphratica and Alhagi sparsifolia in Xinjiang[J]. Arid Zone Research, 2010,27(6):927-932. ]
[20] Liu Q, Parsons A J, Xue H, et al. Functional characterization and transcript analysis of an alkaline phosphatase from the arbuscular mycorrhizal fungus Funneliformis mosseae[J]. Fungal Genetics and Biology, 2013,54:52-59.
[21] Chen K, Shi S M, Yang X H. Contribution of arbuscular mycorrhizal inoculation to the growth and photosynjournal of mulberry in karst rocky desertification area[J]. Applied Mechanics and Metirals, 2014,488(8):769-773.
[22] Barto E K, Hilker M, Müller F, et al. The fungal fast lane: Common mycorrhizal networks extend bioactive zones of allelochemicals in soils[J]. PLoS ONE, 2011,6(11):e27195.
[23] 刘欢. 不同丛枝菌根真菌对四种植物生长特性影响[D]. 兰州: 甘肃农业大学, 2016.
[23] [ Liu Huan. Effect of Various Arbuscular Mycorrhizal Fungi on Plant Growth Characteristics[D]. Lanzhou: Gansu Agricultural University, 2016. ]
[24] Merrild M P, Ambus P, Rosendahl S. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants[J]. New Phytologist, 2013,200(1):229-240.
[25] Weremijewicz J, Sternberg L D, Janos D P. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants[J]. New Phytologist, 2016,212(2):461-471.
[26] 韩艳英, 叶彦辉, 王贞红, 等. 西藏砂生槐根系生物量、比根长和根长密度[J]. 东北林业大学学报, 2014,42(2):39-41.
[26] [ Han Yanying, Ye Yanhui, Wang Zhenhong, et al. Root biomass, specific root length and root length density of Sophora moorcroftian in Tibet[J]. Journal of Northeast Forestry University, 2014,42(2):39-41. ]
[27] Veiga R S, Faccio A, Genre A. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana[J]. Plant Cell & Environment, 2013,36(11):1926-1937.
[28] 文哲. 15N同位素稀释技术和示踪技术在森林土壤N素研究中的应用[J]. 南方农业, 2016,10(30):102-103, 109.
[28] [ Wen Zhe. 15N application on isotope dilution technique and tracer technique in the study of N element in forest soil[J]. South China Agriculture, 2016,10(30):102-103, 109. ]
[29] 刘贝, 高媛, 宋文俊, 等. AMF对烟草氮代谢及渗透调节物质的影响[J]. 菌物研究, 2017,15(1):14-20.
[29] [ LiuBei, Gao Yuan, Song Wenjun, et al. Effects of AMF on nitrogen metabolism and osmotic regulators in tobacco[J]. Journal of Fungal Research, 2017,15(1):14-20. ]
[30] 邹英宁, 吴强盛, 李艳, 等. 丛枝菌根真菌对枳根系形态和蔗糖、葡萄糖含量的影响[J]. 应用生态学报, 2014,25(4):1125-1129.
[30] [ Zou Yingning, Wu Qiangsheng, Li Yan, et al. Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliata[J]. Chinese Journal of Applied Ecology, 2014,25(4):1125-1129. ]
[31] Walder F, Niemann H, Natarajan M, et al. Mycorrhizal networks: Common goods of plants shared under unequal terms of trade[J]. Plant Physiology, 2012,159:789-797.
[32] 马坤, 杨建军, 李璐, 等. 接种丛枝菌根真菌后干旱胁迫对木棉根区土壤和体内养分的影响[J]. 中南林业科技大学学报, 2017,37(11):90-95, 102.
[32] [ Ma Kun, Yang Jianjun, Li Lu, et al. Drought stress effects of nutrients of the Bombax ceiba at the root soil and plants body after inoculation of AMF[J]. Journal of Central South University of Forestry&Technology, 2017,37(11):90-95, 102. ]
[33] 赖金莉, 李欣欣, 薛磊, 等. 植物抗旱性研究进展[J]. 江苏农业科学, 2018,46(17):23-27.
[33] [ Lai Jinli, Li Xinxin, Xue Lei, et al. Research progress of plant drought resistance[J]. Jiangsu Agricultural Sciences, 2018,46(17):23-27. ]
[34] Ma H L, Tecimen H B, Lin W, et al. Role of soluble and exchangeable nitrogen pools in N cycling and the impact of nitrogen added in forest soil[J]. Environmental Science and Pollution Research International, 2020,27(5):5398-5407.
[35] Yang H, Zang Y, Yuan Y. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: Evidence from ITS rDNA sequence metadata[J]. BMC Evolutionary Biology, 2012,2(1):1-13.
[36] 雷垚, 伍松林, 郝志鹏, 等. 丛枝菌根根外菌丝网络形成过程中的时间效应及植物介导作用[J]. 西北植物学报, 2013,33(1):154-161.
[36] [ Lei yao, Wu Songlin, Hao Zhipeng, et al. Development of arbuscular mycorrhizal hyphal networks mediated by different plants and the time effects[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013,33(1):154-161. ]
文章导航

/